{ "metadata": { "name": "", "signature": "sha256:265535ddaffc0266824860d662b8052593e36ca515dd70e32c070b51cf842e7d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter18-Semiconductors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg539" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.2\n", "##calculation of probability\n", "\n", "##given values\n", "T=300.;##temp in K\n", "kT=.026;##temperture equivalent at room temp in eV\n", "Eg=5.6;##forbidden gap in eV\n", "\n", "##calculation\n", "f=1./(1.+math.e**(Eg/(2.*kT)));\n", "\n", "print'%s %.3e %s'%('probability of an e being thermally promoted to conduction band is',f,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "probability of an e being thermally promoted to conduction band is 1.698e-47 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.3\n", "##calculation of fraction of e in CB\n", "\n", "##given values\n", "T=300.;##temp in K\n", "kT=.026;##temperture equivalent at room temp in eV\n", "Eg1=.72;##forbidden gap of germanium in eV\n", "Eg2=1.1;##forbidden gap of silicon in eV\n", "Eg3=5.6;##forbidden gap of diamond in eV\n", "\n", "##calculation\n", "f1=math.e**(-Eg1/(2.*kT));\n", "print'%s %.6f %s'%('fraction of e in conduction band of germanium is',f1,'');\n", "f2=math.e**(-Eg2/(2.*kT));\n", "print'%s %.3e %s'%('fraction of e in conduction band of silicon is',f2,'');\n", "f3=math.e**(-Eg3/(2*kT));\n", "print'%s %.3e %s'%('fraction of e in conduction band of diamond is',f3,'');\n", "print'abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fraction of e in conduction band of germanium is 0.000001 \n", "fraction of e in conduction band of silicon is 6.501e-10 \n", "fraction of e in conduction band of diamond is 1.698e-47 \n", "abpove results shows that larger the band gap and the smaller electrons that can go under into the conduction band\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.4\n", "##calculation of fractionional change in no of e\n", "\n", "##given values\n", "T1=300.;##temp in K\n", "T2=310.;##temp in K\n", "Eg=1.1;##forbidden gap of silicon in eV\n", "k=8.6*10**-5.;##boltzmann's constant in eV/K\n", "\n", "##calculation\n", "n1=(10**21.7)*(T1**(3/2.))*10**(-2500.*Eg/T1);##no of conduction e at T1\n", "n2=(10**21.7)*(T2**(3/2.))*10**(-2500.*Eg/T2);##no of conduction e at T2\n", "x=n2/n1;\n", "print'%s %.1f %s'%('fractional change in no of e is',x,'');\n", "print 'in book he just worte ans but he didnt calculated final ans but here is i calculated'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fractional change in no of e is 2.1 \n", "in book he just worte ans but he didnt calculated final ans but here is i calculated\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg541" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "##Example 18.5\n", "##calculation of resistivity\n", "\n", "##given values\n", "e=1.6*10**-19;\n", "ni=2.5*10**19;##intrinsic density of carriers per m**3\n", "ue=.39;##mobility of e \n", "uh=.19;##mobility of hole\n", "\n", "\n", "##calculation\n", "c=e*ni*(ue+uh);##conductivity\n", "r=1/c;##resistivity\n", "print'%s %.2f %s'%('resistivity in ohm m is',r,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistivity in ohm m is 0.43 \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.6\n", "##calculation of conductivity of intrinsic and doped semiconductors\n", "\n", "##given values\n", "h=4.52*10**24;##no of holes per m**3\n", "e=1.25*10**14;##no of electrons per m**3\n", "ue=.38;##e mobility\n", "uh=.18;##hole mobility\n", "q=1.6*10**-19;##charge of e in C\n", "##calculation\n", "ni=math.sqrt(h*e);##intrinsic concentration\n", "ci=q*ni*(ue+uh);\n", "print'%s %.2f %s'%('conductivity of semiconductor(in S/m) is',ci,'');\n", "cp=q*h*uh;\n", "print'%s %.2f %s'%('conductivity of doped semiconductor (in S/m) is',cp,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity of semiconductor(in S/m) is 2.13 \n", "conductivity of doped semiconductor (in S/m) is 130176.00 \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.7\n", "##calculation of hole concentration\n", "\n", "##given values\n", "ni=2.4*10**19.;##carrier concentration per m**3\n", "N=4*10**28.;##concentration of ge atoms per m**3\n", "\n", "##calculation\n", "ND=N/10**6.;##donor cocntrtn\n", "n=ND;##no of electrones\n", "\n", "p=ni**2./n;\n", "print'%s %.3e %s'%('concentartion of holes per m^3 is',p,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "concentartion of holes per m^3 is 1.440e+16 \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg558" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 18.8\n", "##calculation of Hall voltage\n", "\n", "##given values\n", "ND=10**21.;##donor density per m**3\n", "B=.5;##magnetic field in T\n", "J=500.;##current density in A/m**2\n", "w=3*10**-3.;##width in m\n", "e=1.6*10**-19.;##charge in C\n", "\n", "##calculation\n", "\n", "\n", "V=B*J*w/(ND*e);##in volts\n", "print'%s %.2f %s'%('Hall voltage in mv is',V*10**3,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hall voltage in mv is 4.69 \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }