{ "metadata": { "name": "", "signature": "sha256:fa946e3f77a5fb13eb7ad900f4bb8618950afc67e42b0d85db2b38e779043158" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter14-Lasers\n" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 14.1\n", "##calculation of intensity of laser beam\n", "\n", "##given values\n", "P=10*10**-3.;##Power in Watt\n", "d=1.3*10**-3.;##diametre in m\n", "A=math.pi*d**2./4.;##area in m**2\n", "\n", "\n", "##calculation\n", "I=P/A;\n", "print'%s %.2f %s'%('intensity (in W/m^2) is',I,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intensity (in W/m^2) is 7533.96 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 14.2\n", "##calculation of intensity of laser beam\n", "\n", "##given values\n", "P=1*10**-3.;##Power in Watt\n", "l=6328*10**-10.;##wavelength in m\n", "A=l**2.;##area in m**2\n", "\n", "\n", "##calculation\n", "I=P/A;\n", "print'%s %.3e %s'%('intensity (in W/m^2) is',I,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intensity (in W/m^2) is 2.497e+09 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 14.3\n", "##calculation of coherence length,bandwidth and line width\n", "\n", "##given values\n", "c=3*10**8.;##velocity of light in m/s\n", "t=.1*10**-9.;##timedivision in s\n", "l=6238*10**-10.;##wavelength in m\n", "\n", "##calculation\n", "x=c*t;\n", "print'%s %.2f %s'%('coherence length (in m) is',x,'');\n", "d=1./t;\n", "print'%s %.3e %s'%('bandwidth (in Hz) is',d,'');\n", "y=l**2*d/c;##line width in m\n", "print'%s %.2f %s'%('line width(in armstrong )is',y*10**10,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "coherence length (in m) is 0.03 \n", "bandwidth (in Hz) is 1.000e+10 \n", "line width(in armstrong )is 0.13 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 14.4\n", "##calculation of frequency difference\n", "\n", "##given values\n", "c=3*10**8;##velocity of light in m/s\n", "l=.5;##distance in m\n", "\n", "##calculation\n", "f=c/(2*l);##in hertz\n", "print'%s %.2f %s'%('frequency difference (in MHz) is',f/10**6,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency difference (in MHz) is 300.00 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg418" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 14.5\n", "##calculation of no of cavity modes\n", "\n", "##given values\n", "c=3*10**8.;##velocity of light in m/s\n", "n=1.75;##refractive index\n", "l=2*10**-2;##length of ruby rod in m\n", "x=6943*10**-10.;##wavelength in m\n", "y=5.3*10**-10.;##spread of wavelength in m\n", "\n", "##calculation\n", "d=c/n/l;\n", "f=c*y/x**2.;\n", "m=f/d;\n", "print'%s %.2f %s'%('no of modes is',m,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "no of modes is 38.48 \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }