{ "metadata": { "name": "", "signature": "sha256:2a584685665e22931eee90916ad677c233c22b41ab4fa1c2aff95245e3dea9a5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Phase equilibria" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 106.; \t\t\t#vapour pressure of n-heptane (kPa)\n", "P2 = 74.; \t\t\t#vapour pressure of toluene (kPa)\n", "P = 101.3; \t\t\t#total pressure (kPa)\n", "\n", "# Calculations\n", "x = (P-P2)/(P1-P2)\n", "y = x*(P1/P)\n", "\n", "# Results\n", "print 'Composition of liquid heptane is %f mol percent'%(x*100)\n", "print ' Composition of heptane in vapour form is %f mol percent'%(y*100)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Composition of liquid heptane is 85.312500 mol percent\n", " Composition of heptane in vapour form is 89.270731 mol percent\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 135.4; \t\t\t#vapour pressure of benzene (kPa)\n", "P2 = 54.; \t\t\t#vapour pressure of toluene (kPa)\n", "x = 0.5; \t\t\t#liquid phase composition\n", "\n", "# Calculations\n", "#Using eq. 8.51 (Page no. 332)\n", "P_beg = P2 + (P1-P2)*x;\n", "\n", "#At the end\n", "y = 0.5; \t\t\t#vapour phase composition\n", "#Using eq. 8.54 (Page no. 333) and rearranging\n", "P_end = (P1*P2)/(P1-y*(P1-P2))\n", "\n", "# Results\n", "print 'Pressure at the beginning of the process is %f kPa'%(P_beg)\n", "print ' Pressure at the end of the process is %f kPa'%(P_end)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure at the beginning of the process is 94.700000 kPa\n", " Pressure at the end of the process is 77.208025 kPa\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "def P1(T):\n", " y1 = math.e**(14.5463 - 2940.46/(T-35.93)) \t\t\t#vapour pressure of acetone\n", " return y1\n", "\n", "def P2(T):\n", " y2 = math.e**(14.2724 - 2945.47/(T-49.15)) \t\t\t#vapour pressure of acetonitrile\n", " return y2\n", "\n", "# Variables\n", "T = 327.; \t\t\t#temperature in K\n", "P = 65.; \t\t\t#pressure in kPa\n", "\n", "# Calculations and Results\n", "P1_s = P1(T)\n", "P2_s = P2(T)\n", "\t\t\t#Using eq. 8.51 (Page no. 332)\n", "x1 = (P-P2_s)/(P1_s-P2_s)\n", "\t\t\t#Using eq. 8.54 (Page no. 333)\n", "y1 = x1*(P1_s/P)\n", "print '(a)'\n", "print ' x1 = %f'%x1\n", "print ' y1 = %f'%y1\n", "\n", "\t\t\t#(b). To calculate T and y1\n", "P = 65.; \t\t\t#pressure in kPa\n", "x1 = 0.4;\n", "\n", "flag = 1.;\n", "T2 = 340.; \t\t\t#temperatue (assumed)\n", "while(flag==1):\n", " P1_s = P1(T2)\n", " P2_s = P2(T2)\n", " P_calc = P2_s + x1*(P1_s-P2_s)\n", " if((P_calc-P)<=1):\n", " flag = 0;\n", " else:\n", " T2 = T2-0.8;\n", "\n", "y1 = x1*(P1_s/P)\n", "print ' (b)'\n", "print ' Temperature is %f K'%T2\n", "print ' y1 = %f'%y1\n", "\n", "\t\t\t#(c). To calculate P and y1\n", "T3 = 327.; \t\t\t#temperature in K\n", "x1 = 0.4;\n", "\n", "P1_s = P1(T3)\n", "P2_s = P2(T3)\n", "P = P2_s + x1*(P1_s-P2_s)\n", "y1 = x1*(P1_s/P)\n", "print ' (c)'\n", "print ' Pressure is %f kPa'%P\n", "print ' y1 = %f'%y1\n", "\n", "\t\t\t#(d). To calculate T and x1\n", "P = 65.; \t\t\t#pressure in kPa\n", "y1 = 0.4;\n", "\n", "flag = 1.;\n", "T = 340.; \t\t\t#assumed temperature (K)\n", "while(flag==1):\n", " P1_s = P1(T)\n", " P2_s = P2(T)\n", " y1_calc = (P1_s*(P-P2_s))/(P*(P1_s-P2_s))\n", " if((y1_calc-y1)>=0.001):\n", " flag = 0;\n", " else:\n", " T = T-2;\n", "\n", "x1 = y1*(P/P1_s)\n", "print ' (d)'\n", "print ' Temperature = %f K'%T\n", "print ' x1 = %f'%x1\n", "\n", "#(e). To calculate P and x1\n", "T = 327.; \t\t\t#temperature (K)\n", "y1 = 0.4;\n", "\n", "P1_s = P1(T)\n", "P2_s = P2(T)\n", "#Using eq. 8.54 and 8.51\n", "x1 = (y1*P2_s)/(P1_s-y1*(P1_s-P2_s))\n", "P = x1*(P1_s/y1)\n", "print ' (e)'\n", "print ' Pressure = %f kPa'%P\n", "print ' x1 = %f'%x1\n", "\n", "#(f). To calculate fraction of the system is liquid and vapour in equilibrium\n", "T = 327.; \t\t\t#temperature (K)\n", "P = 65.; \t\t\t#pressure (kPa)\n", "y1 = 0.7344;\n", "\n", "P1_s = P1(T)\n", "P2_s = P2(T)\n", "x1 = (P-P2_s)/(P1_s-P2_s)\n", "#Let f be the fraction of the mixture that is liquid\n", "#Applying acetone balance\n", "f = (0.7-y1)/(x1-y1)\n", "print ' (f)'\n", "print ' Fraction of mixture that is liquid is %f percent'%(f*100)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)\n", " x1 = 0.560806\n", " y1 = 0.734393\n", " (b)\n", " Temperature is 330.400000 K\n", " y1 = 0.588617\n", " (c)\n", " Pressure is 57.633467 kPa\n", " y1 = 0.590765\n", " (d)\n", " Temperature = 334.000000 K\n", " x1 = 0.240940\n", " (e)\n", " Pressure = 50.093199 kPa\n", " x1 = 0.235402\n", " (f)\n", " Fraction of mixture that is liquid is 19.816333 percent\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "%matplotlib inline\n", "\n", "# Variables\n", "P = 101.3; \t\t\t#total pressure over the system (kPa)\n", "T = [371.4, 378, 383, 388, 393, 398.6];\n", "Pa = [101.3 ,125.3, 140.0, 160.0 ,179.9, 205.3];\n", "Pb = [44.4 ,55.6 ,64.5, 74.8, 86.6 ,101.3];\n", "xa = [0,0,0,0,0,0]\n", "ya = [0,0,0,0,0,0]\n", "\n", "# Calculations\n", "#To construct boiling point and equilibrium point diagram\n", "for i in range(6):\n", " xa[i] = (P-Pb[i])/(Pa[i]-Pb[i]) \t\t\t#Using eq. 8.51\n", " ya[i] = xa[i]*(Pa[i]/P )\t\t\t#Using eq. 8.54\n", "\n", "from matplotlib.pyplot import *\n", "\t\t\t#(a).\n", "\t\t\t#To construct boiling point diagram\n", "plot(xa,T)\n", "plot(ya,T)\n", "\t\t\t#title(\"Boiling Point diagram xa and ya Temperature\"\n", "\t\t\t#(b).\n", "\t\t\t#To construct the equilibrium diagram\n", "plot(ya,xa)\n", "\t\t\t#title(\"Equilibrium Diagram\",\"xa\",\"ya\"\n", "show()\n", "#(c).\n", "\n", "# Results\n", "print '(c). The given subpart is theoretical and does not involve any numerical computation'\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHYVJREFUeJzt3X9sG/X9x/Gn7dhp2qYp5Fe3OCsoEj/ixjQtRDBS6gp1\ngYQJKkANLEEbMLWAVrVs0jYm0YRNZGOboDC0byTo/liEaGmrjS1tVb5aXQajpEthodtUASr7xunS\nOA35bcdxct8/Qt3mV20ndtIer4d08vn88d3Hn8LrfXc+5yyGYRiIiIhpWee7AyIiklwKehERk1PQ\ni4iYnIJeRMTkFPQiIianoBcRMbmYgn5kZITi4mK++c1vAtDV1cX69etxu92UlZXR3d0daVtXV0dh\nYSFFRUUcOnQoOb0WEZGYxRT0O3bsoLCwEIvFAsD27dupqKigpaWFO++8k+3btwPQ3NzMvn37+Oij\njzh48CCbNm0iFAolr/ciIhJV1KD3+Xzs37+fRx99lHO/rdq/fz/V1dUAVFVV0djYCEBjYyOVlZXY\nbDby8vJwuVw0NTUlsfsiIhJN1KDftm0bv/zlL7Fazzf1+/1kZmYCkJWVRUdHBwBtbW04nc5IO6fT\nic/nS3SfRUQkDhcN+j//+c/k5ORQXFyM/lKCiMjlKeViL/7tb3/jzTffZP/+/QSDQXp7e6muriY7\nO5vOzk6ysrLw+/3k5OQAY3vwra2tkff7fD7y8/Mnrdey1AY9own+KCIi5lZQUMAnn3wS9/sssf5R\nsyNHjvCrX/2KP/3pT3zve9+joKCArVu38vzzz3Pq1ClefPFFmpub2bx5M++99x7t7e2Ulpby8ccf\nY7fbx2/UYsEwDEIh6O426Px8GP/nAfzdQTq7A3T1BunqC9DdH6S7P0DvYIDewSB9wQADQ0EGQwEG\nh4MEwwEMWxDHogCOhUHsaQFsqUGsqQGsjgCkBCElwKgtyKg1QJggwwQYNoIMjQRIsaaQZk9jQcoC\n0lK+eLSnjZsf99oUy6d6f7S2Vsv5A6mamhpqamri/oczI43FeRqL8zQW553LznhddI9+qo0A1NbW\nsnHjRnbu3MmyZcvYvXs3AKtXr2bDhg243W6sViv19fWTQv5CDgfk5FjIyXEADiAj7g8QDEJPz9RT\nd/cX82cnv/Z5t0FP3zA9gwGC9iAjVwZgaQDb0iApSwKkpAcZXhzAuiiIsShAOC1IcMFYIbE4Aljs\nfWD3Y9gCjFqDDI0GCIaDBIa/eAxPfn5u3m6zR8I/eDTIrpd3TV8cYiggUQvUFAVGRL48Yg76tWvX\nsnbtWgCuvPJK3nrrrSnbPfXUUzz11FOJ6V0MFiwYm3Jz432nBXBgGA6CwYypC8SFU9s0y7+Y7HZI\nT4clS85PX10y/vmSJZCeaZCWHmLB4iCpiwLs/efPeahkEylpQWypY0cowfDk4nCucPQO9dIx0HG+\nkFykoEx8zWFzsNC+cNy0yLFo/LKUhZPaTNt2islutUd2CETk0hDXHr0ZWSyQljY2LVs2s3UYxtiR\nRW9v9Mnns9Dbm0pfXyq9vRm0td1D87vXR14PhS4oCumTC8WSJbB0CXztwjZLpygo6WCzXdhHg6GR\nIQaHBy86DYQGxj3vGOgYmw9fvN25adQYja0wpEwuIgNfHeC1j16LWky+DEcnHo9nvrtwydBYzF7M\n5+gTutEZnmf6Mhgehr6+yQViqmXTTX19Y1NaWvSiMbE4nJtfvPj8tGjR+KJx0f6PDBMIB6IWhEkF\nZjj2dkPhIdLsaVELwoXFJNrRyCL7IhY7Fkcmh82hIxO55Mw0OxX0JjU6CoODsReGicv6+89PAwNj\np8fS08cXgGhTtPYpMzyeHDVGCQwHElY4zhWj/lA//aF+BoYHGBkdiYT+Isf5IjCxIFz4fLp2Fy53\n2ByJ/YeWLxUFvSTN6CgEAuPDv79/rEBMXDbdNFVbuz32ohBrAXEkKEdDIyEGQgMMDA9ECkB/qJ+B\n0MC4gjBp+fD4NhPbWbBcvCDYJxeHWAqK3Tb9RQ9iHgp6uayc+14j1qIQSwHp6wOrNb6jigvbpKdP\nPT/TI4+phEZCUxaNaQvHhOXTtbNZbZOPNqYrKF/MZyzIICM1g6ULlpKx4IvH1AyWpC7BZo3xXJ3M\nKQW9fOkZxtiX2fEcVZxbduHjxGUOx/RFYCbziTrqOP+5x75ov2hxmPBa31AfvaFeuoPd9AR7xh6H\nxh77Q/0ssi8aVwDOFYFxjwumf74gZYG+40gCBb1IEhjG2GmrcwVguoIQ63xf39gX27MpGBOfp6aO\nXT2WKCOjI/SF+iYVgInPL/YaMH1BSL2geExTLNId6TqqmIKCXuQyYBgwNDT7gnHh/MjIxYtDWtrY\nl+nnHidO8Sx3OGIrKsFwcMoCMOn5hOXnlvWH+sdOL01RLDJSMyKnnaZ6XJK6hIzUDNJT0013Ga6C\nXuRL6tzpqumKQSAw9n3IhVOsyyYuD4dnXyxiaWtPHWHE1seQpZuQpYeA0c3gaA+9obGi0DPUE3ns\nHeod9/zc4+DwYKRYTCoIE4rCdIXjUvu+QkEvIkk3MjJ2RBJLUYingMTSdmho7Igi1mLhWDCCLa0X\nS1oPLOgBRy+jjh5GUnoIp/QQtvUQsvYwZOlhiB4CRg+B0R4GR3oZCPfQH+6hf7iPhSkLzxeFaQrG\ndEcV55Yl6qooBb2ImNro6NjRS6ILyMWWBYKjBEf7CRg92Bb24EjvwZ7eQ8qiHmyLerEt7BkrJKlj\n06ijhxH7F8Xki0ISsvRiw0GaJYM0awYLrRksSslgcUoG6Y4M0h1Lvjg1lcHStAyuXJhB5qIMstIz\nyE7PIHtJBlmLM1hgT1XQi4gki2GM/Wp9JgUkEDDoGxqkO9hD31APfcNjRwuDIz0MjIwdRQTpZYge\nQpYehm1jRSKc0sOovQfD8cURiWGFnw0p6EVEzGh42KC7P0jOlQsV9CIiZjbT7DTXtUciIjKJgl5E\nxOQU9CIiJqegFxExOQW9iIjJXTTog8EgN910E8XFxVxzzTVs27YNGLsru9PppLi4mOLiYg4cOBB5\nT11dHYWFhRQVFXHo0KHk9l5ERKKKenllIBAgLS2NcDhMaWkpdXV1vP3226Snp/Pkk0+Oa9vc3Mzm\nzZs5evQo7e3tlJaWcvLkSRwT/i6rLq8UEYlf0i6vTEtLAyAUCjEyMkJubi7AlBtrbGyksrISm81G\nXl4eLpeLpqamuDslIiKJEzXoR0dHWblyJbm5uaxbt47CwkIAXn75Za6//nqqqqro6uoCoK2tDafT\nGXmv0+nE5/MlqesiIhKLqEFvtVr58MMP8fl8vP3223i9Xp544gk+/fRT/vWvf1FQUMCWLVvmoq8i\nIjIDMd8NMyMjg4qKCo4ePYrH44ks37RpE+vWrQPG9uBbW1sjr/l8PvLz86dcX01NTWTe4/GMW6eI\niIDX68Xr9c56PRf9Mvbs2bM4HA7S09MJBAKUlZXxwx/+kJKSErKzswF46aWXOHz4MPv27Yt8Gfve\ne+9Fvoz9+OOPsdvH/y1mfRkrIhK/mWbnRffoT58+zUMPPYRhGASDQR588EEqKiqorq6mpaWFUCjE\n8uXLefXVVwFYvXo1GzZswO12Y7Vaqa+vnxTyIiIyt/TXK0VELhP665UiIjIlBb2IiMkp6EVETE5B\nLyJicgp6ERGTU9CLiJicgl5ExOQU9CIiJqegFxExOQW9iIjJKehFRExOQS8iYnIKehERk1PQi4iY\nnIJeRMTkFPQiIianoBcRMTkFvYiIySnoRURM7qJBHwwGuemmmyguLuaaa65h27ZtAHR1dbF+/Xrc\nbjdlZWV0d3dH3lNXV0dhYSFFRUUcOnQoub0XEZGoot4cPBAIkJaWRjgcprS0lLq6Ovbt20dBQQFb\nt27lhRde4NSpU+zYsYPm5mY2b97M0aNHaW9vp7S0lJMnT+JwOMZvVDcHFxGJW9JuDp6WlgZAKBRi\nZGSEnJwc9u/fT3V1NQBVVVU0NjYC0NjYSGVlJTabjby8PFwuF01NTXF3SkREEidq0I+OjrJy5Upy\nc3NZt24dLpcLv99PZmYmAFlZWXR0dADQ1taG0+mMvNfpdOLz+ZLUdRERiUVKtAZWq5UPP/yQnp4e\nysrKOHz4cEI2XFNTE5n3eDx4PJ6ErFdExCy8Xi9er3fW64ka9OdkZGRQUVHB+++/T3Z2Np2dnWRl\nZeH3+8nJyQHG9uBbW1sj7/H5fOTn50+5vguDXkREJpu4E1xbWzuj9Vz01M3Zs2fp6+sDxr6Ufeut\ntygqKqK8vJyGhgYAGhoaKC8vB6C8vJxdu3YRDofx+XycOHGCkpKSGXVMREQS46J79KdPn+ahhx7C\nMAyCwSAPPvggFRUV3HLLLWzcuJGdO3eybNkydu/eDcDq1avZsGEDbrcbq9VKfX09drt9Tj6IiIhM\nLerllUnZqC6vFBGJW9IurxQRkcubgl5ExOQU9CIiJqegFxExOQW9iIjJKehFRExOQS8iYnIKehER\nk1PQi4iYnIJeRMTkFPQiIianoBcRMTkFvYiIySnoRURMTkEvImJyCnoREZNT0IuImJyCXkTE5BT0\nIiImFzXoW1tbue222ygqKuLaa6/lueeeA6Cmpgan00lxcTHFxcUcOHAg8p66ujoKCwspKiri0KFD\nyeu9iIhEFfXm4GfOnMHv97NixQr6+/tZtWoVb7zxBn/4wx9IT0/nySefHNe+ubmZzZs3c/ToUdrb\n2yktLeXkyZM4HI7zG9XNwUVE4pa0m4Pn5uayYsUKABYvXozb7aatrQ1gyg02NjZSWVmJzWYjLy8P\nl8tFU1NT3B0TEZHEiOsc/WeffcaxY8dYs2YNAC+//DLXX389VVVVdHV1AdDW1obT6Yy8x+l04vP5\nEthlERGJR0qsDfv7+7n//vvZsWMH6enpPPHEEzz99NPA2Pn6LVu20NDQEPOGa2pqIvMejwePxxPz\ne0VEvgy8Xi9er3fW64l6jh5geHiYu+66izvuuINt27ZNev306dOsW7eOkydP8tOf/pS0tDR+8IMf\nAHDXXXfx4x//mFtvvfX8RnWOXkQkbkk7R28YBo888giFhYXjQr6joyMyv3fvXlwuFwDl5eXs2rWL\ncDiMz+fjxIkTlJSUxN0xERFJjKinbt59910aGhpwu90UFxcD8Oyzz/Laa6/R0tJCKBRi+fLlvPrq\nqwCsXr2aDRs24Ha7sVqt1NfXY7fbk/spRERkWjGdukn4RnXqRkQkbkk7dSMiIpc3Bb2IiMkp6EVE\nTE5BLyJicgp6ERGTU9CLiJicgl5ExOQU9CIiJqegFxExOQW9iIjJKehFRExOQS8iYnIKehERk1PQ\ni4iYnIJeRMTkFPQiIianoBcRMTkFvYiIySnoRURMLmrQt7a2ctttt1FUVMS1117Lc889B0BXVxfr\n16/H7XZTVlZGd3d35D11dXUUFhZSVFTEoUOHktd7ERGJKurNwc+cOYPf72fFihX09/ezatUq3njj\nDV555RUKCgrYunUrL7zwAqdOnWLHjh00NzezefNmjh49Snt7O6WlpZw8eRKHw3F+o7o5uIhI3JJ2\nc/Dc3FxWrFgBwOLFi3G73bS1tbF//36qq6sBqKqqorGxEYDGxkYqKyux2Wzk5eXhcrloamqKu2Mi\nIpIYcZ2j/+yzzzh27BilpaX4/X4yMzMByMrKoqOjA4C2tjacTmfkPU6nE5/Pl8Aui4hIPFJibdjf\n3899993Hjh07WLJkyaw3XFNTE5n3eDx4PJ5Zr1NExEy8Xi9er3fW64kp6IeHh7n33nv51re+xT33\n3ANAdnY2nZ2dZGVl4ff7ycnJAcb24FtbWyPv9fl85OfnT1rnhUEvIiKTTdwJrq2tndF6op66MQyD\nRx55hMLCQrZt2xZZXl5eTkNDAwANDQ2Ul5dHlu/atYtwOIzP5+PEiROUlJTMqHMiIjJ7Ua+6eeed\nd7jttttwu91YLBZg7PLJkpISNm7cyJkzZ1i2bBm7d+9m6dKlADz77LM0NDRgtVr59a9/TVlZ2fiN\n6qobEZG4zTQ7owZ9MijoRUTil7TLK0VE5PKmoBcRMTkFvYiIySnoRURMTkEvImJyCnoREZNT0IuI\nmJyCXkTE5BT0IiImp6AXETE5Bb2IiMkp6EVETE5BLyJicgp6ERGTU9CLiJicgl5ExOQU9CIiJqeg\nFxExOQW9iIjJRQ36hx9+mNzcXIqKiiLLampqcDqdFBcXU1xczIEDByKv1dXVUVhYSFFREYcOHUpO\nr0VEJGZRbw7+17/+lcWLF/PQQw/x0UcfAVBbW0t6ejpPPvnkuLbNzc1s3ryZo0eP0t7eTmlpKSdP\nnsThcIzfqG4OLiISt6TdHHzNmjVcccUVk5ZPtbHGxkYqKyux2Wzk5eXhcrloamqKu1MiIpI4Mz5H\n//LLL3P99ddTVVVFV1cXAG1tbTidzkgbp9OJz+ebfS9FRGTGUmbypieeeIKnn34aGDtfv2XLFhoa\nGuJaR01NTWTe4/Hg8Xhm0hUREdPyer14vd5Zr2dGQZ+VlRWZ37RpE+vWrQPG9uBbW1sjr/l8PvLz\n86dcx4VBLyIik03cCa6trZ3RemZ06qajoyMyv3fvXlwuFwDl5eXs2rWLcDiMz+fjxIkTlJSUzKhj\nIiKSGFH36B944AGOHDlCZ2cn+fn51NbWcvjwYVpaWgiFQixfvpxXX30VgNWrV7NhwwbcbjdWq5X6\n+nrsdnvSP4SIiEwv6uWVSdmoLq8UEYlb0i6vFBGRy5uCXkTE5BT0IiImp6AXETE5Bb2IiMkp6EVE\nTE5BLyJicgp6ERGTU9CLiJicgl5ExOQU9CIiJqegFxExOQW9iIjJKehFRExOQS8iYnIKehERk1PQ\ni4iYnIJeRMTkFPQiIiYXNegffvhhcnNzKSoqiizr6upi/fr1uN1uysrK6O7ujrxWV1dHYWEhRUVF\nHDp0KDm9FhGRmEUN+u985zscPHhw3LLt27dTUVFBS0sLd955J9u3bwegubmZffv28dFHH3Hw4EE2\nbdpEKBRKTs9FRCQmUYN+zZo1XHHFFeOW7d+/n+rqagCqqqpobGwEoLGxkcrKSmw2G3l5ebhcLpqa\nmpLQbRERidWMztH7/X4yMzMByMrKoqOjA4C2tjacTmekndPpxOfzJaCbIiIyUynzteGamprIvMfj\nwePxzFdXREQuSV6vF6/XO+v1zCjos7Oz6ezsJCsrC7/fT05ODjC2B9/a2hpp5/P5yM/Pn3IdFwa9\niIhMNnEnuLa2dkbrmdGpm/LychoaGgBoaGigvLw8snzXrl2Ew2F8Ph8nTpygpKRkRh0TEZHEiLpH\n/8ADD3DkyBE6OzvJz8/nmWeeoba2lo0bN7Jz506WLVvG7t27AVi9ejUbNmzA7XZjtVqpr6/Hbrcn\n/UOIiMj0LIZhGHO+UYuFedisiMhlbabZqV/GioiYnIJeRMTkFPQiIianoBcRMTkFvYiIySnoRURM\nTkEvImJyCnoREZNT0IuImJyCXkTE5BT0IiImp6AXETE5Bb2IiMkp6EVETE5BLyJicgp6ERGTU9CL\niJicgl5ExOSi3jP2Yq666iqWLFmCzWbDbrfT1NREV1cXGzdu5MyZM3zlK19h165dLF26NFH9FRGR\nOM1qj95iseD1evnggw9oamoCYPv27VRUVNDS0sKdd97J9u3bE9JRERGZmVndHPzqq6/m73//O5mZ\nmZFlBQUFNDU1kZmZSWdnJzfffDOffPLJ+I3q5uAiInGbl5uDWywW1q9fj9vt5je/+Q0Afr8/EvxZ\nWVl0dHTMZhMiIjJLszpHf/ToUXJycvD7/dxxxx1cd911ieqXiIgkyKyCPicnB4Ds7Gzuu+8+jh07\nRnZ2Np2dnWRlZeH3+yNtJqqpqYnMezwePB7PbLoiImI6Xq8Xr9c76/XM+Bz94OAgAAsXLmRgYIDy\n8nK+//3v89Zbb1FQUMDWrVt5/vnnOXXqFC+++OL4jeocvYhI3GaanTMO+lOnTnHPPfdgsVgYHByk\nsrKSZ555ZtzllcuWLWP37t2TLq9U0IuIxG/Og342FPQiIvGbl6tuRETk0qegFxExOQW9iIjJKehF\nRExOQS8iYnIKehERk1PQi4iYnIJeRMTkFPQiIianoBcRMTkFvYiIySnoRURMTkEvImJyCnoREZNT\n0IuImJyCXkTE5BT0IiImp6AXETE5Bb2IiMklJegPHjxIUVERhYWF/OIXv0jGJkREJEYJD/qhoSEe\ne+wxDh48SEtLC3v27OGDDz5I9GZMw+v1zncXLhkai/M0FudpLGYv4UH//vvv43K5yMvLIyUlhY0b\nN9LY2JjozZiG/iM+T2NxnsbiPI3F7KUkeoU+n4/8/PzIc6fTqX8oEbMwjLHp3HyiH6daFgzC559P\n3SbW53PZJpnrnaGEB73FYomt4V13nZ+f+CEut+ezWcf//R/87//O72eIdz5Z7/f74fXXL40+T3xM\n9LJo7QMBeOGFxK93piE8lXP/r1/4ONWymT6emx8agv/5n+m3E+vzuWyTzPXOQMKD3ul00traGnne\n2to6bg8foKCgAItO50TUXjBeX3a1Z8/OdxcuGbVDQ/PdhYuLpRgkyCU/FnOkoKBgRu+zGEZi/5WC\nwSDXXXcd7777Ljk5OXz961+nvr6eVatWJXIzIiISo4Tv0S9YsIDf/va3lJWVMTo6SnV1tUJeRGQe\nJXyPXkRELi1J/WVsLD+c2rJlCy6Xi1WrVpn6evtoY/H73/8et9tNUVERN954I83NzfPQy7kR6w/q\njh07RkpKCvv27ZvD3s2tWMbC6/VSUlLCypUrWbt27Rz3cO5EG4v29nZuv/12XC4X1157LfX19fPQ\ny+R7+OGHyc3NpaioaNo2ceemkSTBYNC46qqrDJ/PZwwPDxs33nijcfz48XFt9uzZY9x9992GYRjG\n8ePHjRtuuCFZ3ZlXsYzF+++/b/T29hqGYRgHDhwwVq5cOR9dTbpYxsIwDCMcDhvr1q0zKioqjD17\n9sxDT5MvlrH473//a7hcLuPMmTOGYRjG2bNn56OrSRfLWPzkJz8xfvSjHxmGYRh+v99YunSpEQwG\n56O7SfX2228bx48fN1asWDHl6zPJzaTt0cfyw6n9+/dTXV0NQHFxMeFwGJ/Pl6wuzZtYxqKkpIT0\n9HQAbr31Vtra2uajq0kX6w/qXnrpJe677z6ys7PnoZdzI5axeP3119m4cSM5OTkAXHnllfPR1aSL\nZSzy8/Pp7e0FoLe3l+zsbFJTU+eju0m1Zs0arrjiimlfn0luJi3op/rh1MTOxNLGDOL9nPX19dx9\n991z0bU5F8tYtLW18cc//pHHHnsMiOO3GZeZWMbi5MmTnD59mltuuQW3280rr7wy192cE7GMxXe/\n+13++c9/8tWvfpUbbriBHTt2zHU3Lwkzyc2EX3VzTqz/cxoTvgs24//U8Xwmr9fLzp07effdd5PY\no/kTy1hs3bqVn//851gsFgzDmPTfiFnEMhYjIyOcOHGCv/zlLwwODnLzzTdzyy234HK55qCHcyeW\nsXj22WdZuXIlXq+XTz/9lPXr1/OPf/wjciT8ZRJvbiZtjz6WH05NbOPz+XA6ncnq0ryJZSwAWlpa\nePTRR3nzzTcveuh2OYtlLJqbm6msrOTqq69m7969PP7447z55ptz3dWki2Usvva1r/GNb3yDtLQ0\nMjMzWbt2LS0tLXPd1aSLZSzeeecd7r//fmDsh0NXX301//73v+e0n5eCGeVmwr5BmCAQCBjLly83\nfD6fEQqFjBtvvNFobm4e12bPnj3GPffcYxiGYTQ3NxtutztZ3ZlXsYzFf/7zH6OgoMB477335qmX\ncyOWsbjQt7/9bWPv3r1z2MO5E8tYHD9+3Lj99tuNcDhsDAwMGIWFhcYHH3wwTz1OnljG4vHHHzdq\namoMwzCM9vZ2Y9myZZEvqc3m1KlTF/0yNt7cTNqpm+l+OHXukqhNmzZx7733cvjwYVwuF6mpqfzu\nd79LVnfmVSxj8cwzz/D5559Hzkvb7Xaamprms9tJEctYfFnEMhbFxcXccccduN1uhoeHefTRR1m5\ncuU89zzxYhmLp59+mqqqKgoLCxkZGeFnP/tZ5EtqM3nggQc4cuQInZ2d5OfnU1tby/DwMDDz3NQP\npkRETE63EhQRMTkFvYiIySnoRURMTkEvImJyCnoREZNT0IuImJyCXkTE5BT0IiIm9/8XDjZRk2RO\nAwAAAABJRU5ErkJggg==\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "(c). The given subpart is theoretical and does not involve any numerical computation\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "x1 = 46.1/100; \t\t\t#mole percent of A\n", "P = 101.3; \t\t\t#total pressure of system (kPa)\n", "P1_s = 84.8; \t\t\t#vapour pressure of component A (kPa)\n", "P2_s = 78.2; \t\t\t#vapour pressure of component B (kPa) \n", "\n", "# Calculations\n", "#To calculate van Laar constants\n", "gama1 = P/P1_s;\n", "gama2 = P/P2_s;\n", "x2 = 1-x1;\n", "import math\n", "#van Laar constants:\n", "#Using eq. 8.69 (Page no. 348)\n", "A = math.log (gama1)*(1 + (x2*math.log(gama2))/(x1*math.log(gama1)))**2;\n", "B = math.log (gama2)*(1 + (x1*math.log(gama1))/(x2*math.log(gama2)))**2;\n", "\n", "# Results\n", "print 'van Laar constants are:'\n", "print ' A = %f'%A\n", "print ' B = %f'%B\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "van Laar constants are:\n", " A = 1.298059\n", " B = 0.652282\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "x2 = 0.448; \t\t\t#mole fraction of ethanol\n", "P = 101.3; \t\t\t#total pressure (kPa)\n", "P1_s = 68.9; \t\t\t#Vapour pressure of benzene (kPa)\n", "P2_s = 67.4; \t\t\t#vapour pressure of ethanol (kPa)\n", "\n", "# Calculations\n", "#To calculate activity coeffecients in a solution containing 10% alcohol\n", "x1 = 1-x2;\n", "gama1 = P/P1_s;\n", "gama2 = P/P2_s;\n", "import math\n", "#Using eq. 8.69 (Page no. 348)\n", "#van Laar constants:\n", "A = math.log(gama1)*(1 + (x2*math.log(gama2))/(x1*math.log(gama1)))**2;\n", "B = math.log(gama2)*(1 + (x1*math.log(gama1))/(x2*math.log(gama2)))**2;\n", "\n", "#For solution containing 10% alcohol\n", "x2 = 0.1;\n", "x1 = 1-x2;\n", "ln_g1 = (A*x2**2)/(((A/B)*x1+x2)**2)\n", "ln_g2 = (B*x1**2)/((x1+(B/A)*x2)**2)\n", "gama1 = math.e**ln_g1;\n", "gama2 = math.e**ln_g2;\n", "\n", "# Results\n", "print 'Activity coeffecients:'\n", "print ' For component 1: %f'%gama1\n", "print ' For component 2: %f'%gama2\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Activity coeffecients:\n", " For component 1: 1.025516\n", " For component 2: 4.141567\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "x2 = 0.585; \t\t\t#mol fraction of hydrazine\n", "P = 101.3; \t\t\t#total pressure of system (kPa)\n", "P2_s = 124.76; \t\t\t#vapour pressure of hydrazine (kPa)\n", "\n", "# Calculations\n", "#To calculate equilibrium vapour composition for solution containing 20% (mol) hydrazine\n", "x1 = 1-x2;\n", "P1_s = 1.6*P2_s; \t\t\t#vapour pressure of water (kPa)\n", "gama1 = P/P1_s;\n", "gama2 = P/P2_s;\n", "\n", "import math\n", "#Using eq. 8.69 (Page no. 348)\n", "#van Laar constants:\n", "A = math.log(gama1)*(1 + (x2*math.log(gama2))/(x1*math.log(gama1)))**2;\n", "B = math.log(gama2)*(1 + (x1*math.log(gama1))/(x2*math.log(gama2)))**2;\n", "\n", "#For solution containing 20% hydrazine\n", "x2 = 0.2;\n", "x1 = 1-x2;\n", "ln_g1 = (A*x2**2)/(((A/B)*x1+x2)**2)\n", "ln_g2 = (B*x1**2)/((x1+(B/A)*x2)**2)\n", "gama1 = math.e**ln_g1;\n", "gama2 = math.e**ln_g2;\n", "\n", "#Using eq. 8.47 (Page no. 325) for components 1 and 2 and rearranging\n", "alpha = 1.6; \t\t\t#alpha = P1_s/P2_s\n", "y1 = 1./(1 + (gama2*x2)/(gama1*x1*alpha))\n", "y2 = 1-y1;\n", "\n", "# Results\n", "print 'Equilibrium vapour composition for solution containing 20 mol percent hydrazine'\n", "print ' Hydrazine is %f percent'%(y2*100)\n", "print ' Water is %f percent'%(y1*100)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equilibrium vapour composition for solution containing 20 mol percent hydrazine\n", " Hydrazine is 5.279270 percent\n", " Water is 94.720730 percent\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given:\n", "x1 = 0.047; \t\t\t#mol fraction of isopropanol\n", "P1 = 91.11; \t\t\t#vapour pessure of pure propanol (kPa)\n", "P = 91.2; \t\t\t#toatl pressure of system (kPa)\n", "P2 = 47.36; \t\t\t#vapour pressure of water (kPa)\n", "\n", "#van Laar consatnts:\n", "A = 2.470;\n", "B = 1.094;\n", "\n", "#To determine the total pressure:\n", "x2 = 1-x1;\n", "#Using eq. 8.68 (Page no. 348)\n", "ln_g1 = (A*x2**2)/(((A/B)*x1 + x2)**2);\n", "ln_g2 = (B*x1**2)/((x1 + (B/A)*x2)**2);\n", "gama1 = math.e**ln_g1;\n", "gama2 = math.e**ln_g2;\n", "#Total pressure:\n", "P_tot = (gama1*x1*P1) + (gama2*x2*P2);\n", "\n", "# Results\n", "if(P==P_tot):\n", " print 'This is equal to total pressure'\n", "else:\n", " print 'This is less than the total pressure. This error must have been caused by air leak'\n", "\n", "\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "This is less than the total pressure. This error must have been caused by air leak\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 24.62; \t\t\t#vapour pressure of cyclohexane (kPa)\n", "P2 = 24.41; \t\t\t#vapour pressure of benzene (kPa)\n", "from numpy import array\n", "import math\n", "x1 = array([0, 0.2, 0.4, 0.6, 0.8, 1.0])\n", "x2 = 1-x1;\n", "g1 = [0,0,0,0,0,0]\n", "g2 = [0,0,0,0,0,0]\n", "P = [0,0,0,0,0,0]\n", "y1 = [0,0,0,0,0,0]\n", "\n", "# Calculations\n", "for i in range(6):\n", " g1[i] = math.e**(0.458*x2[i]**2) \t\t\t#activity coeffecient for component 1\n", " g2[i] = math.e**(0.458*x1[i]**2 )\t\t\t#activity coeffecient for component 2\n", " P[i] = (g1[i]*x1[i]*P1) + (g2[i]*x2[i]*P2) \t\t\t#total pressure (kPa)\n", " y1[i] = (g1[i]*x1[i]*P1)/P[i];\n", "\n", "\n", "from matplotlib.pyplot import *\n", "\n", "# Results\n", "#To construct P-x-y diagram\n", "plot(x1,P)\n", "plot(y1,P)\n", "\t\t\t#title(\"P-x-y Diagram\",\"x1 and y1\",\"Pressure\"\n", "show()\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcU1cbB/BfAEEBcQJVUFFqERICcWMRsIqouKoianFU\n3ForVl9rrQVHUXmrlqoobutedTIUBw5cCOKqo2pRhig4CTOQ8/5xW5Q3EBIgCZDn+/nko7n3nOTh\nKk9Ozj2DxxhjIIQQohV0NB0AIYQQ9aGkTwghWoSSPiGEaBFK+oQQokUo6RNCiBahpE8IIVpET97J\npKQkfPXVV3jz5g3y8/Ph6+uL//znP/D29sbDhw8BAG/fvkX9+vVx48YNmfpWVlYwMTGBrq4uatWq\nhWvXrqnmpyCEEKIQuUlfX18fISEhEAgEEIvFaNu2LTw8PLB3796iMrNmzUL9+vVLrM/j8RAdHY2G\nDRtWbtSEEELKRW73jrm5OQQCAQDA2NgYQqEQqampRecZY9i3bx+GDx9e6mvQ3C9CCKk6FO7TT0xM\nRGxsLJydnYuOXbhwAebm5rC2ti6xDo/Hg7u7O4RCIVavXl3xaAkhhFSI3O6df4nFYnh5eSE4OBh1\n69YtOr57926MGDGi1HpXrlyBmZkZ0tPT0atXL7Rp0wY9evSoeNSEEELKh5UhPz+f9ezZk61YsaLY\ncYlEwszNzVlKSkpZL8EYYywwMJAFBgbKHLe2tmYA6EEPetCDHko8rK2tFcq9/09u9w5jDL6+vrCz\ns4Ofn1+xc6dOnYKtrS2aNm1aYt3s7GxkZ2cDALKyshAZGQk+ny9T7vHjx2CM0YMx+Pv7azyGqvKg\na0HXgq6F/Mfjx4/lpe9SyU36MTEx2LFjB86ePQuRSASRSITIyEgAwN69e2Vu4KampsLT0xMAkJaW\nBicnJzg6OkIkEsHV1RX9+/cvV5CEEEIqh9w+fWdnZ0il0hLPbdmyReZY06ZNERYWBgBo1aoVbt68\nWQkhEkIIqSwK3cgl6uHm5qbpEKoMbbgWUiZFjiQH4nwxjPSNYKxvDABgDMjNBXJyuEfXrm6aDbQK\n0Yb/F6rGY4wxjQbA40HDIRBSKsaArBwJXmVm4VVmFl5nivEmKwtvs7PwNluM9zlZeJ8rRmZeFjLz\nxMjKz0K2JAtZBWLkFmYhp1CMPGkW8iBGPsuChCdGAS8LBTpZkOpmg1dYBzyJEcB0YHj0CAoSOyEv\nDzAwAOrUAfT0AEtL4MABoFUrTV8NUpWUN3dSS59UKxLJhxZw8QfDu6xcvMnOwrusLLzN4RJyZh6X\nkMX5/yTkAjFyCrKQU5iFXKkYeSwL+UyMfF4WCnhiFOhkoVAnC1I9MaR6WUAtMaBTCEiMoCMxhk6h\nEXSlRtCTGqMWM4I+jKHPM4IBzxi1dYxQW9cIhnpN0UiPa7kb1TFCXQNjmNQ2gkkdI9SrY4z6hkao\nb2iMBsaGMDLUQZ06wIWXRzG7YV9s7r0JgwX9ofPP3TbGgFWrACcnYMMGgG6LkYqilj6pUqRSYMEC\n4MgRLpl/3M2Rk8OV0euwGYXtVgH6YrBaWWC1uAStw2pBt5BLxrUYl4z1eUaorWPMJWNdYxjqGcGo\nlvE/3SlGqFubS8hFydjIGA2MjNDQ2AiNTIzRqK4RDPUNwOPxVP6zX0u5hgF7BmC+y3xM6TCl2Lkr\nVwBvb2D4cGDxYu4bANFu5c2dlPRJlSEWAyNHAq9fA7/8AtSty3Vx1KkD1K7N/RkSF4yVV1bi9y9/\nRxPjJjDSN4JRLSMY6RtBT6f6Z8LHrx+j987eGGQ7CIHdA6HD+zDALiMD+Oor7oNwzx6gSRMNBko0\njpI+qdaSk4F+/QCRCFi3DtDXly0TeCEQWxK24PSo02her7n6g1STjOwM9N/dH1b1rbBlwBYY6BkU\nnSssBH7+GQgNBXbuBOi+pvYqb+6k9fSJxsXGAp07AyNGAJs2ySZ8xhh+PPMjdt7eifNjztfohA8A\njQ0b4/So08gtyEWvnb3wNvdt0TldXeCnn4CtW7munqVLuS4xQhRFLX2iUfv2AVOnAhs3AgMGyJ5n\njOG7k9/hbOJZnPQ5CVMjU/UHqSGF0kLMPDETp/8+jfCvwmU+7JKSuH7+Ro2A338HGjTQUKBEI6il\nT6oVxoBFi4BZs4CoqJITvpRJMSVsCmKSYnBm1BmtSvgAoKuji197/YqxorHosqkLEtISip1v1gyI\njgY+/RRo1w64fl0zcZLqhVr6RO1ycwFfX+DRI+Dw4ZJvSBZICzDu6Dg8efMEx0cch4mBifoDrUL2\n3tmLaRHTsGvQLrhbu8ucP3gQmDyZ+yCdMAFQw2AjomF0I5dUCy9eAAMHAs2bc/3SderIlpEUSuBz\nyAdvct7g8LDDMKxlqPY4q6LzT8/Da78XlvVYhjGOY2TOP3wIDBkCODhwN8ONjNQfI1Ef6t4hVd7t\n20CnToCHBzfksKSEn1uQi8H7BiNHkoOjw49Swv+ISwsXRI+OxoJzC7Dw3EKZX/jPPuPG8+vqctf5\n/n0NBUqqNEr6RC2OHwe6d+dGmwQElNz9kC3JRv/d/VFbrzYODD2A2nq11R5nVWdraotLYy/hyIMj\nGH9sPCSFkmLnDQ2BLVsAPz+ga1fuw5WQj1H3DlEpxoCVK7nJVn/8wQ3NLElmXib67u6LFvVaYPOA\nzTViopUqifPF8NrvBQDY77W/aLG2j924AXh5Ab17c9ffwECmCKnGqHuHVDn5+cDEicC2bVy3Q2kJ\n/03OG7hvd4dtY1tsHbiVEr4CjPWNcXTYUVjUtYDrVlekidNkyohE3Iie5GTAxQV4+lQDgZIqh5I+\nUYnXr7m++7Q04OJF7sZtSdKz0vHF71/AydIJaz3XFlt2gMhXS7cWNvTbgIE2A+G0yQn30u/JlKlf\nn/uGNXQo18//zx5IRIvRbxipdA8fcq369u2BQ4e4NXRK8jzzOdy2ucGztSdWeKxQy6JmNQ2Px8N8\n1/kIcA2A2zY3XHh6oYQywHffAfv3A+PGcTN6Cws1ECypEqhPn1Sq06e55RQCA7mx+KV59u4Zuv/e\nHWMcxmCeyzz1BViDRT2Owog/RmBNnzUYyh9aYpkXL7jlG3R0gF27ADMzNQdJKg316RONCw3lVoHc\nu1d+wn/8+jFct7piaoeplPArkbu1O6JGRmHmiZlYfml5iQnB3JybAd25MzeLNyZGA4ESjaKWPqmw\nwkKu+yAykhua+emnpZe9n3Ef7tvd8WPXHzGx/UT1BalFnr17hj47++CLll9gpcdK6OrollguLAwY\nOxaYM4cb4km9a9ULzcglGvH+PdddkJ/PLZ4mb9Gvm2k30XtnbyztsRSjHEapL0gt9Db3Lb7c+yUa\n1G6AnYN2ok6tEmbCAUhM5G7yWlpy4/vr1VNvnKT8qHuHqF1iIvD550CLFkB4uPyEH5sSC48dHgju\nFUwJXw3q166PyK8iUadWHXT/vTsysjNKLGdlBVy4ADRtyt14v3lTvXES9aOkT8rl0iVu39YJE4A1\na4BatUove/HZRXju8sSGfhvgxfdSX5BazkDPANu/3A7XFq7osqkLHr9+XHI5A2D1am6byh49gM2b\n1RwoUS8mx7Nnz1jXrl2ZQCBgn332GVu2bBljjLGhQ4cyR0dH5ujoyKysrJijo2OJ9SMiIphAIGC2\ntrZs6dKlJZYpIwRSBW3fzpipKWPh4WWXPfX4FGsc1JidfHRS9YGRUoVcC2FNfmnCriZflVvu7l3G\nbG0Z+/prxrKy1BQcKZfy5k65tdLS0tjt27cZY4xlZmay1q1bs4SEhGJlvvvuO7Zo0SKZurm5uczK\nyoolJycziUTC2rdvz+Lj4ystcKJ+hYWMzZvHWMuWjN25U3b54w+OM9MgU3Yu8ZzqgyNlOnL/CGsc\n1JgdvX9UbrnMTMaGD2dMKGTs4UM1BUeUVt7cKbd7x9zcHAKBAABgbGwMoVCI1NTUj78lYN++fRg+\nfLhM3atXr4LP58PCwgJ6enrw9vZGWFhYJX5HIeqUnc3t0hQdDVy9CvD58ssf/PMgxh4di2PDj8Gl\nhYtaYiTy9bfpj7ARYZhwfALWxq4ttZyxMbf/7qRJ3D2bP/5QY5BE5RTu009MTERsbCycnZ2Ljl24\ncAHm5uawtraWKZ+cnIxmzZoVPbe0tERycnIFwyWakJrKrd1iaMhNvjItYwOrnbd2YlrENJzwOYFO\nlp3UEyRRSEeLjrj49UWsvLISc0/NhZSVvMEuj8dtyhIWxg3H/e47QCIpsSipZhRa2UosFsPLywvB\nwcGo+9Gc+t27d2PEiBEl1lFmSn1AQEDR393c3ODm5qZwXaJa8fHcVoZTpgDff1/2WO4NcRuw4NwC\nnB51GnamduoJkijFuqE1YsbGoP+e/hh5aCQ2998MA72Sl+Ds0AGIiwNGjQK6deMm3llYqDlgAgCI\njo5GdHR0xV+orP6f/Px81rNnT7ZixYpixyUSCTM3N2cpKSkl1jt//jzz9PQseh4UFMQWL14sU06B\nEIiGHDzIWOPG3J+KCL4SzJqvbM4eZlBHcHWQlZ/FBu4ZyLpt7cbe5LyRW7awkLHAQMY++YSxqCg1\nBUjkKm/ulFtLKpWykSNHshkzZsici4iIYG5ubqXWzcnJYS1atGDJycksPz+ftW/fnsXFxckGQEm/\nypFKuV9wS0vGSvgnK9GSC0uYdbA1S3yTqNrgSKUqKCxg34R/w/hr+OzZ22dllj99mrEmTRhbuJD7\nICCao5Kkf+HCBcbj8ZiDg0PREM2IiAjGGGNjxoxhoaGhxcqnpKSwPn36FD0PDw9nfD6f2drassDA\nwEoNnKhGbi5jo0Yx1q4dY8nJZZeXSqVs/pn5rM3qNiz5nQIVSJUjlUrZLzG/MMsVlizheUKZ5VNS\nGHN2ZqxXL8YyMtQQIClReXMnLcNAiqSnA19+CXzyCfD779yNW3kYY5gdNRtRT6IQNTIKZka0ZGN1\ntvfOXnwT8Q12DtoJd2t3uWUlEmDePK6Pf98+bq1+ol60DAOpkLt3uV9cNzful7ishC9lUkwLn4bz\nT8/j7OizlPBrAG+BNw4MPQCfQz7YlrBNbtlatYCgICA4GOjXj5vRS2236oFa+gSRkdzojBUrAB+f\nsssXSgsx7tg4PHr9CGEjwmBiYKL6IIna3Eu/h947e8NX5IsfXX4scyTe48fAkCFAmzbA+vWlb5pD\nKhe19InSGAN++41bXvfwYcUSvqRQgq/++ApJ75IQ+VUkJfwayNbUFpd9L+PQ/UOYcGwCCqQFcstb\nW3NrMdWtyw3xvHtXTYGScqGWvpaSSIDp07kVFo8f51ZbLEteQR68D3ijQFqAA0MPoLZebZXHSTQn\nMy8TQw8MBQ887PPaB2N94zLrbNsGzJoFrFypWCOClB+tp08U9uYNt4a6vj6wezdgokBjPVuSjUF7\nB8FY3xi7Bu+Cvq6+6gMlGicplGBy2GTcSLuBsBFh+MT4kzLr3LrFdfd88QXw669AbWobqAR17xCF\nPHrELYksEABHjyqW8DPzMuG5yxOmRqbYM2QPJXwtUku3Fjb024ABNgPgtMkJ9zPul1lHKASuXwde\nvQKcnYG//1ZDoERhlPS1SHQ090vo58d9/dYteRe9Yt7mvkXPHT3RumFrbBu4DXo6Cq3cQWoQHo+H\nn1x/gr+rP1y3uuLC0wtl1jEx4UaBjRzJ7cd77JgaAiUKoe4dLbFpE/DDD8CuXUD37orVycjOQM/t\nPdG1eVf82utXpdZTIjXTyccn4fOHD9b0WaPwhjiXL3MrtH71FbBoEaBH7YZKQX36pESFhdxCaUeO\ncK0tGxvF6qWJ09Dj9x7o91k/BHYPpIRPiiSkJaDvrr6Y6TQTfp39FPq/kZ7OJf38fGDPHm4CIKkY\n6tMnMjIzuRm2cXHAlSuKJ/ykd0lw2eKCYYJhlPCJDMdPHHHJ9xI239gMvxN+KJQWllnH1BSIiOAm\n/7VrB5w7p/o4Scko6ddQz55x/ffm5tzkq4YNFav35M0TuG51xaT2kxSamEO0U/N6zXFx7EXcfHET\nQw8MRY4kp8w6urpAQAC3B6+3N7BsGSAteTl/okKU9GugK1e4ETpjxnAzJPUVHGxzP+M+XLe6YnaX\n2ZjpNFOlMZLqr37t+oj8KhIGugbosb0HMrIzFKrn4QHExnITAr/8khtCTNSHkn4Ns2cP0L8/EBrK\njdJRtKF+68UtfLHtCyzqtgiTO0xWbZCkxjDQM8COQTvQtXlXfL75czx580Shes2acV08LVty3T3x\n8SoOlBShG7k1BGPcV+dt27jx90Kh4nWvp15H3119EdwrGN4Cb5XFSGq2kNgQLD6/GEeGHUEHiw4K\n19u/n9uZ7eefgfHjFW+oaDsavaPFcnKAr78Gnj7lvjKbmyteN+ZZDL7c+yU3AafNANUFSbTC0QdH\n4XvUF1sGbEHfz/oqXO/BA24Wr0gErF0LGBmpMMgagkbvaKnnz7kREbq6wNmzyiX8M3+fwcC9A7H9\ny+2U8Eml6G/TH8eHH8f4Y+Ox7vo6hevZ2ABXr3Kt/E6duA8BohqU9KuxhARutmO/fsCOHcqtcRLx\nVwSGHRiG/V774fGph+qCJFqnk2UnXPz6IlZcXoEfTv+gcGvU0BDYuhX49ltu5Nm+faqNU1tR9041\ndfQoMG4ct3nF0KHK1T107xAmHp+II8OOwKmZk2oCJFovPSsd/ff0h3UDa2wesFmpNZvi4wEvL6Bv\nX+C//1V8BJo2oe4dLcEY90swZQoQFqZ8wt91excmh01GpE8kJXyiUqZGpjg96jSyJFnovbM33uW+\nU7hu27bcom2JiYCLCzfvhFQOSvrVSH4+4OvLrZ9z5Qq3YYUyNsVvwuyo2Tg16hTaNmmrmiAJ+Yhh\nLUMc8DoAu8Z2cN7ijKR3SQrXbdCAG5gweDDQsSM3yZBUHHXvVBMZGdx//oYNge3bAeOy97MoZvW1\n1QiKCcKpUafwWaPPVBMkIaVgjGH55eX47epviJsQB1MjU6Xqnz8PDB8O/PIL9yehIZs12r173M3a\nIUOAwEBAR8nvZ0ExQQiNC8XpUadhVd9KJTESoojvTnyH5+Ln2DV4l9J1/12t8+FD2pgFoD79Guvk\nScDVFfjxR2DpUuUSPmMMAdEB2HxjM86POU8Jn2jcoi8W4VrKNRx7oPwC+05O3Dj+kBAVBKZF5KaQ\npKQkuLi4wN7eHjY2NggKCio6t2rVKjg4OMDe3h6zZ88usb6VlRWEQiFEIhE6duxYuZFrgZAQYNQo\n4OBBbh0dZTDGMOfUHPxx7w+cG3MOFiYWKomREGUY1jLEhn4bMCV8ilI3dv/188/cQm3v36sgOC0h\nt3vnxYsXSE9Ph0AggFgsRtu2bbF//34kJydj7dq1OHz4MPT09PDq1Ss0atRIpn7Lli0RFxeHhnKW\neKTuHVkFBdy6OadPc5uWt2qlXH0pk2J6xHRcSb6CEz4n0MhQ9t+GEE2aeGwiACC0X6jSdUeN4n4n\nAgIqOahqRiXdO+bm5hAIBAAAY2NjCIVCpKSkYOPGjZgzZw70/tkCp6SE/y9K6Mp5944bm/zwIdeH\nqWzCL5QWYvzR8biRdgOnR52mhE+qpCD3IIQ/CsfZv88qXXfBAmDVKm5jFqI8hXuIExMTERsbC2dn\nZ9y/fx8nTpyAo6MjnJyccOnSpRLr8Hg8uLu7QygUYvXq1ZUWdE315AnXb9m6NTcGv1495epLCiUY\neWgkEt8l4oTPCdSrreQLEKIm9WrXw1rPtRh3bByyJdlK1W3ZEhgxghvUQJSn0G6VYrEYQ4YMQXBw\nMExMTCCVSpGZmYmEhATExsZi8ODBePr0qcyGG1euXIGZmRnS09PRq1cvtGnTBj169JB5/YCPvqe5\nubnBzc2tQj9UdRQXx7Xw58/nJl4pS8qkGHZwGHIkOTg+/Djq1KpT+UESUon6ftYXu+/sxvwz87Hc\nY7lSdX/8EbCzA2bMAFq0UFGAVUx0dDSio6Mr/kKsDPn5+axnz55sxYoVRce6d+/OoqOji55bW1uz\n58+fy32dwMBAFhgYKHNcgRBqPKmUsU6dGNuypfyvsTZ2Leu8sTPLleRWWlyEqNpL8Utm/l9zdiXp\nitJ1581j7OuvVRBUNVHe3Cm3e4cxBl9fX9jZ2cHPz6/ouKenJ86cOQMAePjwIbKzs2FmZlasbnZ2\nNrKzua9tWVlZiIyMBJ/Pr/inVA0UGQmIxdwNqvJ4nvkc88/Ox4Z+G2CgZ1C5wRGiQqZGpvi1168Y\ne3Qs8grylKo7axY30OHePRUFV0PJTfoxMTHYsWMHzp49C5FIBJFIhMjISEybNg1PnjyBQCDAoEGD\nsHXrVujo6CA1NRWenp4AgLS0NDg5OcHR0REikQiurq7o37+/Wn6o6oQxwN+fG4mg7KSrf30b+S0m\ntJ0AgZmgUmMjRB28+d6wbmCNwAvKddLXrw/Mns119RDF0YxcDQsLA374Abhxo3xJP+xhGGacmIFb\nk25RPz6ptlLep8Ax1BGnR52G0Fzxbd9ycriBD4cOKb8WVXVHM3KroX9b+f7+5Uv44nwxpoZPxTrP\ndZTwSbVmYWKBwC8C4XvUFwXSAoXr1anDDX6YO1eFwdUwlPQ16NgxbiLWwIHlq+9/1h8uLVzQvVX3\nyg2MEA0Y13YcTAxM8OuVX5WqN3Yst1XoqVMqCqyGoe4dDWEMaNeOa+UPKMdOhfHP49F7Z2/cmXxH\n6RULCamqnrx5go4bOuKy72W0btRa4Xp79gArVnzYclEbUPdONXPkCPefszz3tgukBZhwbAKW9VhG\nCZ/UKK0atMK8rvMw/th4SJlU4XpDhwISCde3T+SjpK8BUumHETvlaZWsvrYaJgYmGO0wutJjI0TT\npneajtyCXKyPW69wHR0dbobujz9yXaakdJT0NeDQIW7Pz759la/77N0zLD6/GOv6rpOZAU1ITaCr\no4tN/Tdh/tn5Su201asXYGrKbTJESkd9+momlQIODtza+P9MaVAYYwwD9gxAh6YdMN91vmoCJKSK\nWHRuES4nX0bYiDCFGziXLnE7az14UPM3WqE+/Wri4EHA0BDo00f5un/c+wOPXj/CHOc5lR8YIVXM\nHOc5SH6fjJ23dypcp0sXQCgE1q1TYWDVHLX01aiwkPsPuXw591VUGe9y34EfwseeIXvg3NxZNQES\nUsVcT70Oz12euD35NsyMzMquAODWLaBnT+Cvv4C6dVUcoAZRS78a2L8fMDEBPDyUr/vD6R/Qp3Uf\nSvhEq7Rv2h5jHMbgm4hvFK4jFAI9egArV6owsGqMWvpqUlgICARAcDDXClHG5aTLGLxvMO5OuYsG\ndRqoJkBCqqgcSQ4c1jkgyD0IA9soNpPxyROgY0fg/n2gcWMVB6gh1NKv4vbuBRo1AtzdlasnKZRg\nwvEJWOGxghI+0Up1atXBxv4bMS18Gt7mvlWoTqtWgLc3sGSJioOrhqilrwYFBQCfz2103l3JFROW\nXlyKc0/PIXxEOA3RJFptStgU5BXkYdOATQqVf/6c+3adkAA0a6bi4DSAWvpV2O7dgLk58MUXytV7\n/Poxfrn0C0L6hFDCJ1pvaY+lOPX3KZx6otgiO02aABMncnvqkg+opa9iBQWArS2wfj3QrZvi9Rhj\n8NjhAfdW7pj9+WzVBUhINRLxVwSmhE/B7cm3YaxvXGb5N2+Azz4DLlwA2rRRQ4BqRC39KmrnTsDC\nQrmEDwC7bu/Cy6yXmNF5hmoCI6Qa6t26N7o274ofzyi2c0qDBtwOW/NpLmMRaumrUEEB17rYtAlw\ndVW83uuc1+CH8HFk2BF0tOiougAJqYZeZb+CYK0AB4ceRJdmXcosn53NbbRy5AjQvr0aAlQTaulX\nQdu3Ay1aKJfwAWD2ydnwsvOihE9ICRoZNsJvvX6D71Ff5Bbkllne0JBr6f/wgxqCqwaopa8iEglg\nYwP8/jvgrMR8qnOJ5+BzyAd3p9yFiYGJ6gIkpBpjjGHwvsGwM7XD4i8Wl1leIvlwb03ZARVVFbX0\nq5ht2wBra+USfl5BHiYen4hVvVdRwidEDh6PhzV91mB93HokpCWUWb5WLWDRIm5bxRrYxlQKJX0V\nyM8HFi9WfqjYkotLYGtqq/CsQ0K0WZO6TbCsxzKF99X19gby8ri+fW1GSV8Ftm7lbuB2KfseU5H7\nGfexJnYNVvVepbK4CKlpxjiOQaM6jfDLpV/KLKujA/z8MzBvHrcsiraiPv1KlpfHjRTYvx/o1Emx\nOlImRbdt3TDEdgi+6aT4wlKEECDxbSLar2+PmLExsGlsI7csY4CLCzBuHDC6mm88p5I+/aSkJLi4\nuMDe3h42NjYICgoqOrdq1So4ODjA3t4es2eXPHkoMjIS9vb2sLOzw7Jly5QOrjravJmb+q1owgeA\nLTe2ILcgF1M6TFFdYITUUFb1reDv6o9xx8aVua8uj8etx+PvzzXQtBKTIy0tjd2+fZsxxlhmZiZr\n3bo1S0hIYMePH2eenp5MIpEwxhjLyMiQqZubm8usrKxYcnIyk0gkrH379iw+Pl6mXBkhVCu5uYxZ\nWjJ29aridV6IXzDTIFOW8DxBdYERUsMVSgtZl01d2OqrqxUq7+nJWHCwioNSsfLmTrktfXNzcwgE\nAgCAsbExhEIhUlJSsHHjRsyZMwd6enoAgEaNGsnUvXr1Kvh8PiwsLKCnpwdvb2+EhYVV+odWVbJx\nI+DoyC3pqii/E34Y4zgGDp84qC4wQmo4HZ4ONvXfBP9ofzx9+7TM8j//zG2knpmphuCqGIVv5CYm\nJiI2NhbOzs64f/8+Tpw4AUdHRzg5OeHSpUsy5ZOTk9Hso6XtLC0tkZycXDlRV0G5udzXxoAAxeuc\neHQCl5Muw9/VX2VxEaIt2jRug5lOMzHx+MQy+7odHLjx+r/+qqbgqhA9RQqJxWIMGTIEwcHBMDEx\ngVQqRWZmJhISEhAbG4vBgwfj6dOnxVaCVGZVyICPMqWbmxvc3NwUrltVrF8PtGvHPRSRLcnGlPAp\nCPEMgZG+kWqDI0RLzO4yG/v/3I/fb/6O0Y7y79QuXAh07gxMmcLtdVHVRUdHIzo6uuIvVFb/T35+\nPuvZsycn8aJWAAAgAElEQVRbsWJF0bHu3buz6OjooufW1tbs+fPnxeqdP3+eeXp6Fj0PCgpiixcv\nlnl9BUKo8rKzGWvalLESblmUak7UHDbswDDVBUWIlopPjWemQabseebzMstOmsTYrFlqCEoFyps7\n5XbvMMbg6+sLOzs7+Pn5FR339PTEmTNnAAAPHz5EdnY2zMyKb1rcoUMH3LlzBykpKZBIJNi3bx96\n9+5d8U+pKig0lOvHF4kUK3/rxS1svrEZv3po4XdLQlRM1ESEcW3HYVr4tDLLzp/PjbirwT3PsuR9\nIly4cIHxeDzm4ODAHB0dmaOjI4uIiGD5+fnMx8eH8fl8xufz2YkTJxhjjKWkpLA+ffoU1Q8PD2d8\nPp/Z2tqywMDASv20qiqyshhr0oSxBAUH3xQUFrBOGzqx9dfXqzYwQrRYjiSH2ayyYQfuHiiz7Jw5\njI0fr4agKll5cydNzqqg5cuBy5eBAwcUK7/m2hrsubsH58acgw6PJkQToioxz2Lgtd8Ld6bcQcM6\nDUst9+9GKzEx3J/VRXlzJyX9CsjK4hZVi4oC7O3LLp/yPgWOoY44P+Y8bE1tVR8gIVpuesR0vM97\nj60Dt8ott2QJt5fu3r3qiasy0CqbGhASwk3pViThA8D0yOmY3H4yJXxC1CSweyDOPT2HE49OyC03\nfTq3pWJ8vJoC0yBq6ZeTWMy18s+cAfj8sssffXAUs6Nm4+akm6itV1v1ARJCAAAnH5/EhGMTcHvy\nbdQ1qFtquZAQ4OhRIDJSjcFVALX01Wz1am5yhyIJPzMvE9PCp2Gd5zpK+ISoWU/rnujWsht+OC1/\n66xx44CHD4HKGApflVFLvxwyM7lW/rlz3G48ZZkROQPv8t5hy4Atqg+OECLjTc4bCNYKsHfIXjg3\nL31no507uQbdpUvc4mxVGbX01WjVKsDdXbGEfz31Ovbc2YNf3Mte75sQohoN6jTAqt6r4HvUFzmS\nnFLLDR/ODdA4dkyNwakZtfSV9P498Omn3E0fG/lLd6NAWoAOGzpgZueZGOkwUj0BEkJK5bXfC582\n+BRLeiwptczx48D33wM3bwK6umoMTknU0leT334DevUqO+EDQPCVYDSq0wg+Qh/VB0YIKdPq3qux\nOWEz4p+XPkzH0xOoVw/YtUuNgakRtfSV8PYttyvWpUvcn/L8u5vPlXFX8GnDT9UTICGkTL/f/B0r\nLq9A7PhY1NKtVWKZ8+e5nbUePAD09dUcoIKopa8GwcFcK6CshM8Yw9TwqZjpNJMSPiFVzEjhSDSp\n2wRBMUGllnFx4e7ZrV+vxsDUhFr6Cnr7luvLv3qVG7kjz767+7Dw3ELET4yHvm4VbSYQosWevXuG\ntqFtceHrC6VOlrxxA+jTB/jrL8DYWM0BKoBa+iq2ciXQv3/ZCf9t7lv4nfDD+n7rKeETUkU1r9cc\nC7sthO9RXxRKC0ssIxIBbm7cN/yahFr6Cnj9mluI6do1oFUr+WUnHZ8EHnhY23eteoIjhJSLlEnh\nttUNg20H49vO35ZY5q+/ACcnrm+/qm20QguuqdCPPwIvXgAbNsgvF/MsBkMPDMXdKXdRv3Z99QRH\nCCm3h68eosumLogdH4uWDVqWWGbiRG40T1DptwA0gpK+irx6xbXy4+IAK6vSy+UX5kMUKkKAawC8\n+F5qi48QUjFBMUGIehKFkz4nS9zmNSUFEAqBW7cACwsNBFgK6tNXkeXLgSFD5Cd8APhvzH/Rsn5L\nDLEbopa4CCGVY6bTTLzJeYMtCSUvk2JhAfj6AosWqTkwFaGWvhwZGdwkrBs3gObNSy/316u/4LTJ\nCXET4tCifgv1BUgIqRQ3027Cfbs7EiYloGndpjLn/72vd/ly2UO21YVa+irw3/8C3t7yEz5jDJPC\nJuGHrj9QwiekmnL4xAET203ElLApJSbShg0BPz/gp580EFwlo6RfipcvgY0bgR/kr8aK7be2423u\nW0zvNF09gRFCVOJHlx/x8NVD7P9zf4nnv/2WW3b5xg31xlXZqHunFLNnAzk53DKrpcnIzoAgRICw\nEWFo17Sd+oIjhKjE5aTLGLRvEO5MvoNGhrJjNFevBsLDuYem0eidSvTiBWBnV/bd+jGHx6BB7QZY\n2Wul+oIjhKiUX6QfMnIysP3L7TLn8vO5+3zbtnFLNWgS9elXomXLAB8f+Qn/zN9ncDbxLBZ9UUNu\n6RNCAACLv1iMmGcxCP9Ltjmvrw8sXAjMnQtUsbaqwijp/5/nz7lP8e+/L71MbkEuJh2fhNW9V8NY\nvwouykEIKTcjfSNs6LcBk45Pwvu89zLnR4wA3r0DwsI0EFwlkJv0k5KS4OLiAnt7e9jY2CDonylp\nAQEBsLS0hEgkgkgkQmQpOwlbWVlBKBRCJBKhY8eOlR+9CixbBowaBTRpUnqZn8//DKG5EP1s+qkv\nMEKI2nRv1R0e1h6YEzVH5pyuLhAYyA3ykEo1EFwFye3Tf/HiBdLT0yEQCCAWi9G2bVvs378fhw8f\nRt26dTFz5ky5L96yZUvExcWhYcOGpQdQhfr0U1MBe3vg7l3gk09KLvNn+p9w3eqKm5NuljielxBS\nM7zNfQtBiAA7B+2Eq5VrsXOMAZ9/DkydCnz1lWbiU0mfvrm5OQQCAQDA2NgYQqEQKSkpAKDwm1WV\nhK6IpUuBMWNKT/hSJsWEYxOwwG0BJXxCarj6tesjxDME446NQ7Yku9g5Hg9YsgSYP5+7uVudKNyn\nn5iYiNjYWHTt2hUAsGbNGtja2sLHxwevX78usQ6Px4O7uzuEQiFWyxv7WAUkJwM7dwL/+U/pZTbG\nb0QhK8Sk9pPUFxghRGP62/RHuybtEBAdIHPO1ZWbpbtxo/rjqgiFhmyKxWJ069YN8+bNw8CBA5GR\nkYFG/6wzGhAQgMePH2PHjh0y9V6+fAkzMzOkp6ejV69eWLZsGXr06FE8AB4P/v7+Rc/d3Nzg5uZW\nwR9LeVOnAkZGpa+klyZOg3CtEKdHnYa9ub16gyOEaEx6Vjrs19rj2PBj6GDRodi5+Higb19uCWYj\nI9XGER0djejo6KLnCxYsUM04fYlEgr59+6JXr17w8/OTOZ+amopu3brhwYMHct9oyRJu9/m5c+cW\nD6AK9OknJQGOjsD9+4Cpacllhh0Yhpb1W2JJjyXqDY4QonG7bu/C0otLcX3CdZnNkby9ufzxf6lN\n5VTSp88Yg6+vL+zs7Iol/JcvXxb9/eDBg+Dz+TJ1s7OzkZ3N9YNlZWUhMjKyxHJVQWAgMH586Qk/\n4q8IxKbG4ifXGrDwBiFEacMFw9G8XnMsvbhU5tyiRcCKFcCbNxoIrBzktvQvXrwIFxcXCIXConWm\nAwMDsWvXLty6dQv5+flo0aIFNm3aBAsLC6SmpmL8+PEICwvDkydP8OWXX4LH4yE7OxvDhg3DwoUL\nZQPQcEv/6VOgbVtuZ5zGjWXPZ+VnQbBWgPV918Pd2l39ARJCqoTk98kQhYpwdvRZCMwExc5NmMAt\nyrZU9jNBZWgZhnKaMIFr4f/8c8nnZ5+cjefi59gxSPaeBSFEu4ReD8XmhM24NPYSdHV0i44nJwMO\nDsCdO/Ln+FQmSvrl8PffQIcOwMOH3Kf0/0tIS4DHDg/cnnwbZkZm6g+QEFKlSJkU3X/vjn6f9cNM\np+LzlGbNArKzgZAQ9cRCSb8cxo3jPpVL2hGnUFqIzps6Y3L7yRgrGqv+4AghVdKj14/QeWNnXB13\nFdYNrYuOv3rFLcZ29SpgbS3nBSoJLbimpMePgcOHgdImFa+JXQOjWkb42vFr9QZGCKnSPm34KeY6\nz8X4Y+OLJd1Gjbg196v6Rita29L/+mugRQsgIED2XNK7JIhCRYgZGwObxjZqj40QUrUVSAvQZVMX\njG87HuPbjS86LhYDn34KnDjB9fGrEnXvKOHRI8DJiZtQUb++7PmBewZC9IkI/m7+sicJIQTAnZd3\n0G1bN9yYeAOWJpZFx3/7DTh5Ejh+XLXvT907Sli0CPjmm5IT/qF7h/Dg1QN87yxnbWVCiNYTmAkw\nrcM0TA6bXCz5TpzIjeK5eFGDwcmhdUn/4UNuq7Nvv5U99z7vPaZHTkdo31AY6BmoPzhCSLUyt+tc\nJL5NxJ47e4qOGRgACxZU3Y1WtC7pL1zIJfx69WTPzTs9Dx7WHnBpoeF90Agh1YK+rj429d8EvxN+\nSM9KLzru4wO8fg1ERGgwuFJoVZ/+/fvcvpaPHgEmJsXPXU2+ioF7B+LulLtoWKf09f8JIeT/zTo5\nC6mZqdg1eFfRscOHuYEi8fGAjgqa19Snr4CFCwE/P9mELymUYMLxCVjeczklfEKI0hZ2W4hrKddw\n7MGxomMDBgC1awN792owsBJoTUv/zz+Bbt24Vn7dusXPBcUE4fTfpxH5VWTRGkOEEKKM6MRojDw0\nEncm30G92lz/8dmz3GKO9+4BtWpV7vvRkM0yDBsGiETAnP/b8vLvN3+jw4YOuDb+Glo1aKXyOAgh\nNdek45MgZVKs77e+6FjPnsCgQcCkSt57iZK+HHfuAN27c7NwjY0/HGeMoffO3uhm1Q1znGU3QCaE\nEGW8z3sPQYgAWwduxRctvwAAXL/OdfX89RdgaFh570V9+nIsWADMnl084QPAnjt78Fz8XGbhJEII\nKQ8TAxOs9VyL8cfGIys/CwDQvj3QpQuwapWGg/tHjW/p37oFeHhwffkfb2f2Ouc1+CF8HPY+jE6W\nnVT2/oQQ7ePzhw/MjMywwmMFAG7kYNeu3DyhBg0q5z2oe6cUgwcDn38uu7Da+KPjYaBngNV9qvaG\n7YSQ6icjOwP2a+1xyPsQOlt2BsCt6mtmxu3UVxko6ZcgIQHo04dr5X/cl3bh6QUMPzgcf079EyYG\nJqW/ACGElNPeO3ux8PxCxE+Ih4GeQdFe3JW10Qr16ZcgIIAbrfNxws8ryMOE4xPwW+/fKOETQlRm\nKH8oPm34KQIvcE37Zs2AMWOAxYs1G1eNbenHxwP9+nGt/Dp1PhxfeG4h4p7H4bD3YRqTTwhRqdTM\nVDiuc8SpUacgNBciIwNo0wa4dg1oVcER4tTS/z8BAcD33xdP+A8yHuC3q79hde/VlPAJISrXtG5T\nLOm+BL5HfVEgLUDjxtwKv/4aXLW9Rib92FiupT/+w94GYIxhUtgkzHeZj2b1mmkuOEKIVhkrGot6\nBvWw8vJKANygkqgo4PZtzcRTI5N+QAC3rGnt2h+ObU3YCnG+GNM6TtNYXIQQ7cPj8bC+33osi1mG\nh68eom5drhdi3jwNxVPT+vSvXgW8vLjZbwb/LImfnpUOwVoBIr+KhKiJqNLeixBCFPXrlV9x6P4h\nnB19Fvl5OrCxAXbt4oaUl4dK+vSTkpLg4uICe3t72NjYICgoCAAQEBAAS0tLiEQiiEQiREZGllg/\nMjIS9vb2sLOzw7Jly5QOrjwCAoAffviQ8AFg5smZGCkcSQmfEKIx33T8BvmF+Qi9HoratT/kKrU3\nu5kcaWlp7Pbt24wxxjIzM1nr1q1ZQkICCwgIYMuXL5dXleXm5jIrKyuWnJzMJBIJa9++PYuPj5cp\nV0YISrl0ibHmzRnLy/tw7OSjk6zFyhZMnCeutPchhJDyuPvyLmsc1Jg9ffuUSSSM2doyFhFRvtcq\nb+6U29I3NzeHQCAAABgbG0MoFCIlJeXfDwu5HyZXr14Fn8+HhYUF9PT04O3tjbCwsEr5oCqNvz/X\nT6avzz3PkeRgcthkhHiGwEjfSH5lQghRMTtTO3zb6VtMOj4JuroMixdz9x+lUvXFoPCN3MTERMTG\nxqJr164AgDVr1sDW1hY+Pj54/fq1TPnk5GQ0a/ZhlIylpSWSk5MrIeSSxcRw/fhjxnw4tuj8IrRr\n2g59WvdR2fsSQogy5nw+BymZKdh5eye+/JJbZ3//fvW9v54ihcRiMby8vBAcHIy6deti6tSp+Omn\nnwBw/fvTp0/Hjh07itVRZhx8QEBA0d/d3Nzg5uamcN1/+fsDP/74oZV/+8VtbIzfiFuTbyn9WoQQ\noiq1dGthc//N6LOrD9xbuWPJEnNMmsStuS9vo5Xo6GhER0dXPICy+n/y8/NZz5492YoVK0o8n5KS\nwj777DOZ4+fPn2eenp5Fz4OCgtjixYtlyikQQpnOnWOsVSvG8vO554XSQua00Ymti11X4dcmhBBV\nmBM1h3nt82KMMda9O2OhocrVL2/ulNu9wxiDr68v7Ozs4OfnV3T85cuXRX8/ePAg+Hy+TN0OHTrg\nzp07SElJgUQiwb59+9C7d++Kf0qV4N9W/r+fkqHXQ6HD08H4duPlVySEEA3xd/VHQloCDt07hCVL\nuD28c3LU8MbyPhEuXLjAeDwec3BwYI6OjszR0ZGFh4czHx8fJhQKWZs2bZiHhwdLTk5mjHGt/j59\n+hTVDw8PZ3w+n9na2rLAwMBK/bT619mzjFlbMyaRcM9T3qewxkGN2Z0Xdyr0uoQQomrnE8+zpsub\nstfZr9mgQYwFBSlet7y5s1pPzmIMcHMDfH2BUaO4Y177vWDTyAaLv9DwUnaEEKKAqWFTkVuQi1mf\nbYKrK7fRSv36ZdfTygXXzp4Fnj8HRozgnh9/eBwJaQmY11VD85sJIURJS3ssxem/TyNZPwp9+wK/\n/KLa96u2LX3GABcXYOJEwMcHEOeLwQ/hY3P/zejeqrsKIiWEENWIfBSJyWGTEd73Npw7GuPPPwFz\nc/l1tG7nrKgobonSu3cBXV1g5omZeJXzCtsGblNBlIQQolqjD49GfYP60DkZjIKCsjdS16qkzxi3\nSNG0aVzXTlxqHPrs6oO7U+6isWFjFUVKCCGq8zrnNQQhAmxwP4BR3brg+nWgZcvSy2tVn/7Jk8Db\nt4C3N1AgLcCE4xMQ1COIEj4hpNpqWKchfuv9G2Zd8MXkb3Lx0ZzVSlXtkj5j3Lh8f3+uW2fV1VWo\nX7s+RjmM0nRohBBSIUPshsDO1A65nRYhMpLbRL2yVbvunfBw4D//AW7dApIzn6FtaFtc9r2M1o1a\nqzBKQghRj+eZz+GwzgEjcRKPYxxx+HDJ5bSie+fjVj6PxzA1fCpmdJ5BCZ8QUmM0qdsEQe5BOFN3\nLOJuSHD5cuW+frVK+mFhQF4eMHgwcPDeQTx58wT/+fw/mg6LEEIq1WiH0TAzNkXHGcsxd27lbrRS\nbZI+Y9xOMwEBQGb+O3wb+S1C+4ZCX1df06ERQkil4vF4CO0bivMFy/Es6wFOnqy81642Sf/YMaCg\nABg4EJh7ei76tu4L5+bOmg6LEEJUwqq+Ffxd/aE/1Bdzf5BW2kYr1SLp/9uXHxAAXE25jMP3D2Np\nj6WaDosQQlRqSocpaNwIyGgZgoMHK+c1q0XSP3wY4PGAPn0lmHB8AlZ6rESDOg00HRYhhKiUDk8H\nm/pvwjtRAOYsSURBQSW8ZsVfQrWkUq6Fv2ABsPzyL2hm0gxD+UM1HRYhhKiFTWMbzHH5Dm+7TsSW\nLRW/o1vlk/6hQ9wWiLZdHmP55eUI8QxRaitGQgip7mZ3mQVTq3TM2b2twhutVOnJWVIp4OAALFnC\nEPymJzysPTCryyw1R0gIIZp34/kNdF7jge/r3cKC2Z/UzMlZBw4AhobAm2Y7kZGdgRmdZ2g6JEII\n0QhRExFG24/HsttT8e5d+V+nyrb0CwsBoRD4ackrfPuQj2PDj6GDRQcNREgIIVVDbkEuPvEXwV13\nMQ4sGlKzWvr79wMmJkAkmw1vvjclfEKI1qutVxubBmzCwZxvyv0aVTLpFxZyo3UGzYzG6SenaL9b\nQgj5x+COXdC5TvlXFa6S3Ts7dwKr1+XitbcDgnoEYUCbARqKjhBCqqYas3NWQQHA5wMd5/gjy+g2\n/vD+Q4PREUJI1VTepK+nglgqZPduwNjqHiJfhSBhSIKmwyGEkBpFbp9+UlISXFxcYG9vDxsbGwQF\nBRU7v3z5cujo6OD169cl1reysoJQKIRIJELHjh3LDKagAFiwUApJr4nwd/WHhYmFEj8KIYSQssht\n6evr6yMkJAQCgQBisRht27aFh4cHHBwckJSUhKioKLRo0aLU+jweD9HR0WjYsKFCwezYAei23wTD\nuvmY3H6ycj8JIYSQMslt6Zubm0MgEAAAjI2NIRQKkZqaCgCYOXOmTMu/JIr2OUkkgP9/0/DSfh7W\n91sPXR1dheoRQghRnMJDNhMTExEbGwtnZ2ccOXIElpaWEAqFcuvweDy4u7tDKBRi9erVcstu3w7k\nuvlhQoevITSX/7qEEELKR6EbuWKxGF5eXggODoauri4CAwMRFRVVdL601vyVK1dgZmaG9PR09OrV\nC23atEGPHj1kys2fH4CV2x6B91kkuvF2l/NHIYSQmis6OhrR0dEVfp0yh2xKJBL07dsXvXr1gp+f\nH27fvo0ePXrA0NAQAJCcnAwLCwtcu3YNZmZmpb7OkiVLAABz584tHgCPh9WhYsz6W4DDvuvg8alH\nRX8mQgip8VQyTp8xhtGjR6NRo0ZYuXJliWVatmyJuLg4mZu12dnZAABDQ0NkZWWhT58++O6779C/\nf3+ZwE0Gz0Yn92ScnLhL6R+AEEK0kUpW2YyJicGOHTtw9uxZiEQiiEQiREREyLzxv1JTU+Hp6QkA\nSEtLg5OTExwdHSESieDq6iqT8P+V02Yrtn9V8ocKIYSQylMlZuTO3b8BgUPGaTIMQgipVqr1MgyF\n0kLo8Krk2m+EEFIlVetNVCjhE0KIelC2JYQQLUJJnxBCtAglfUII0SKU9AkhRItQ0ieEEC1CSZ8Q\nQrQIJX1CCNEilPQJIUSLUNInhBAtQkmfEEK0CCV9QgjRIpT0CSFEi1DSJ4QQLUJJnxBCtAglfUII\n0SKU9AkhRItQ0ieEEC1CSZ8QQrQIJX1CCNEilPQJIUSLyE36SUlJcHFxgb29PWxsbBAUFFTs/PLl\ny6Gjo4PXr1+XWD8yMhL29vaws7PDsmXLKi9qQggh5SI36evr6yMkJAS3b99GXFwcNm7ciJs3bwLg\nPhCioqLQokWLEuvm5eVh8uTJiIyMxK1bt3DgwAHcuHGj8n+CGiQ6OlrTIVQZdC0+oGvxAV2LipOb\n9M3NzSEQCAAAxsbGEAqFSE1NBQDMnDlTpuX/satXr4LP58PCwgJ6enrw9vZGWFhYJYZe89B/6A/o\nWnxA1+IDuhYVp3CffmJiImJjY+Hs7IwjR47A0tISQqGw1PLJyclo1qxZ0XNLS0skJydXLFpCCCEV\noqdIIbFYDC8vLwQHB0NXVxeBgYGIiooqOs8Yk6nD4/EqL0pCCCGVg5UhPz+f9ezZk61YsYIxxtit\nW7eYmZkZs7KyYlZWVkxPT4+1aNGCvXjxoli98+fPM09Pz6LnQUFBbPHixTKvb21tzQDQgx70oAc9\nlHhYW1uXlb5LxGMlNdP/wRjD6NGj0ahRI6xcubLEMi1btkRcXBwaNmxY7Hhubi7atGmDmJgYmJmZ\noUuXLggNDUXbtm1LeztCCCEqJrdPPyYmBjt27MDZs2chEokgEokQERFRrMzH3Tipqanw9PQEANSu\nXRtr166Fh4cHHBwcMGjQIEr4hBCiYXJb+oQQQmoWtc3IVWSi1vTp08Hn89G2bdsaPaa/rGuxfft2\nCIVC2Nvbo3379oiLi9NAlOqh6AS+2NhY6Onp4Y8//lBjdOqlyLWIjo5Gx44d4ejoCFdXVzVHqD5l\nXYu0tDR0794dfD4fNjY2CA0N1UCUqjd27FiYm5vD3t6+1DJK581y3QlQUm5uLrOysmLJyclMIpGw\n9u3bs/j4+GJlDhw4wAYMGMAYYyw+Pp45ODioIzS1U+RaXL16lb1//54xxlhERARzdHTURKgqp8i1\nYIyxgoIC1q1bN+bp6ckOHDiggUhVT5Fr8fz5c8bn84sGTbx69UoToaqcItdi3rx57Pvvv2eMMZae\nns7q16/PcnNzNRGuSp0/f57Fx8czgUBQ4vny5E21tPQVmagVHh6OkSNHAgBEIhEKCgpq5Lh+Ra5F\nx44dUbduXQDA559/jpSUFE2EqnKKTuBbtWoVhgwZAlNTUw1EqR6KXIs9e/bA29sbZmZmACAzeKKm\nUORaNGvWDO/fvwcAvH//HqampjAwMNBEuCrVtWtXNGjQoNTz5cmbakn6ikzU0pbJXMr+nKGhoRgw\nYIA6QlM7Ra5FSkoKjhw5gsmTJwOoufM/FLkWDx48QGpqKpycnCAUCrFx40Z1h6kWilyL8ePH4+7d\nu2jatCkcHBwQHBys7jCrhPLkTYUmZ1WUor+o7P/uKdfEX3Blfqbo6Ghs3rwZMTExKoxIcxS5FjNm\nzMDSpUvB4/HAGCtxImBNoMi1KCwsxJ07d3DmzBlkZ2ejc+fOcHJyAp/PV0OE6qPItQgMDISjoyOi\no6Px+PFjuLu74+bNm0XfkLWJsnlTLS19S0tLJCUlFT1PSkoq9ulUUpnk5GRYWlqqIzy1UuRaAMCt\nW7cwbtw4HD16VO7Xu+pMkWsRFxeHYcOGoWXLljh48CCmTJmCo0ePqjtUlVPkWjRv3hw9e/ZEnTp1\n0KhRI7i6uuLWrVvqDlXlFLkWFy9ehJeXFwDA2toaLVu2xL1799QaZ1VQrrxZaXcc5MjJyWEtWrRg\nycnJLD8/n7Vv357FxcUVK3PgwAE2cOBAxhhjcXFxTCgUqiM0tVPkWjx9+pRZW1uzy5cvayhK9VDk\nWnxszJgx7ODBg2qMUH0UuRbx8fGse/furKCggGVlZTE7Ozt248YNDUWsOopciylTprCAgADGGGNp\naWnsk08+kVkVoKb4+++/5d7IVTZvqqV75+OJWlKpFCNHjkTbtm2LhllNnDgRgwcPxtmzZ8Hn82Fg\nYIAtW7aoIzS1U+RaLFy4EG/evCnqx65VqxauXbumybBVQpFroS0UuRYikQi9evWCUCiERCLBuHHj\n4OjoqOHIK58i1+Knn36Cj48P7OzsUFhYiMWLFxfd4K5Jhg8fjnPnziEjIwPNmjXDggULIJFIAJQ/\nb6JgRoMAAAA/SURBVNLkLEII0SK0XSIhhGgRSvqEEKJFKOkTQogWoaRPCCFahJI+IYRoEUr6hBCi\nRSjpE0KIFqGkTwghWuR/4t39YqZswywAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P = 40.25; \t\t\t#total pressure (kPa)\n", "y1 = 0.566; \t\t\t#mol fraction of benzene in vapour phase\n", "x1 = 0.384; \t\t\t#mol fraction of benzene in liquid state\n", "P1 = 29.6; \t\t\t#vapour pressure of benzene (kPa)\n", "P2 = 22.9; \t\t\t#vapour pressure of ethanol (kPa)\n", "\n", "#To determine the composition and total pressure of azeotrope\n", "x2 = 1-x1;\n", "y2 = 1-y1;\n", "\n", "# Calculations\n", "#Using eq. 8.47 (Page no. 325)\n", "#Activity coeffecients:\n", "g1 = (y1*P)/(x1*P1)\n", "g2 = (y2*P)/(x2*P2)\n", "\n", "import math\n", "\t\t\t#Using eq. 8.69 (Page no. 348)\n", "\t\t\t#van Laar constants:\n", "A = math.log(g1)*((1 + (x2*math.log(g2))/(x1*math.log(g1)))**2)\n", "B = math.log(g2)*((1 + (x1*math.log(g1))/(x2*math.log(g2)))**2)\n", "\n", "\t\t\t#Assuming azeotropic comp. (for hit and trial method)\n", "x1 = 0.4;\n", "flag = 1.;\n", "while(flag==1):\n", " x2 =1-x1;\n", " ln_g1 = (A*x2**2)/(((A/B)*x1 + x2)**2)\n", " ln_g2 = (B*x1**2)/((x1 + (B/A)*x2)**2)\n", " g1 = math.e**ln_g1;\n", " g2 = math.e**ln_g2;\n", " P_1 = g1*P1;\n", " P_2 = g2*P2;\n", " if((P_1-P_2)<=1) and ((P_1-P_2)>=-1):\n", " flag = 0;\n", " else:\n", " x1 = x1+0.1;\n", "\n", "# Results\n", "print 'Azeotropic compositon of benzene is %i percent'%(x1*100)\n", "print ' Total pressure of azeotrope is %f kPa'%((P_1+P_2)/2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Azeotropic compositon of benzene is 60 percent\n", " Total pressure of azeotrope is 40.858067 kPa\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "a12 = 1225.31; \t\t\t#(J/mol)\n", "a21 = 6051.01; \t\t\t#(J/mol)\n", "V1 = 74.05*10**-6; \t\t\t#(m**3/mol)\n", "V2 = 18.07*10**-6; \t\t\t#(m**3/mol)\n", "\n", "R = 8.314; \t\t\t#ideal gas constant\n", "T = 349; \t\t\t#temperature in K\n", "\n", "\n", "# Calculations\n", "#Antoine Equation:\n", "#Vapour pressure of 1st element\n", "def P1(T):\n", " y1 = math.e**(14.39155-(2795.817/(T-43.198)))\n", " return y1\n", "\n", "\t\t\t#Vapour pressure of 2nd element\n", "def P2(T):\n", " y2 = math.e**(16.26205-(3799.887/(T-46.854)))\n", " return y2\n", "\n", "\t\t\t#To calculate equilibrium pressure and composition\n", "\t\t\t#Using eq. 8.73 (Page no. 350)\n", "\t\t\t#Wilson Parameters:\n", "W12 = (V2/V1)*math.e**(-a12/(R*T));\n", "W21 = (V1/V2)*math.e**(-a21/(R*T));\n", "import math\n", "\t\t\t#Using Antoine equation\n", "P1_s = P1(T);\n", "P2_s = P2(T);\n", "\n", "\t\t\t#(a). Composition of vapour in equilibrium\n", "x1 = 0.43;\n", "x2 = 1-x1;\n", "\n", "\t\t\t#Using eq. 8.72 (Page no. 350)\n", "\t\t\t#Wilson equations:\n", "\t\t\t#Activity coeffecient of 1st component\n", "def g_1(n1,n2): \t\t\t#n1 is mol fraction of 1 and n2 is for 2\n", " y3 = math.e**(-math.log(n1 + W12*n2) + n2*((W12/(n1+W12*n2))-(W21/(W21*n1+n2))));\n", " return y3\n", "\n", "\t\t\t#Activity coeffecint of 2nd component\n", "def g_2(n1,n2):\n", " y4 = math.e**(-math.log(n2 + W21*n1) - n1*((W12/(n1+W12*n2))-(W21/(W21*n1+n2))));\n", " return y4\n", " \n", "\t\t\t#Activity coeffecients:\n", "g1 = g_1(x1,x2);\n", "g2 = g_2(x1,x2);\n", "\n", "P = (g1*x1*P1_s) + (g2*x2*P2_s);\n", "y1 = (g1*x1*P1_s)/P;\n", "\n", "# Results\n", "print '(a).'\n", "print ' Equilibrium pressure is %f kPa'%P\n", "print ' Composition of acetone vapour in equilibrium is %f'%y1\n", "\n", "\n", "#(b). Composition of liquid in equilibrium\n", "y1 = 0.8;\n", "y2 = 1-y1;\n", "g1 = 1; g2 = 1; \t\t\t#assumed activity coeffecients\n", "P_as = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));\n", "\n", "\t\t\t#Hit and trial method:\n", "flag = 1;\n", "while(flag==1):\n", " x1 = (y1*P_as)/(g1*P1_s);\n", " x2 = 1-x1;\n", " g1 = g_1(x1,x2);\n", " g2 = g_2(x1,x2);\n", " P_calc = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));\n", " if((P_calc-P_as)<=1) and ((P_calc-P_as)>=-1):\n", " flag = 0;\n", " else:\n", " P_as = P_calc;\n", "\n", "print ' (b).'\n", "print ' Equilibrium Pressure is %f kPa'%P_calc\n", "print ' Composition of acetone in liquid in equilibrium is %f'%x1\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).\n", " Equilibrium pressure is 162.828251 kPa\n", " Composition of acetone vapour in equilibrium is 0.795360\n", " (b).\n", " Equilibrium Pressure is 164.488565 kPa\n", " Composition of acetone in liquid in equilibrium is 0.456817\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P = 101.3; \t\t\t#total pressure of system (kPa)\n", "T = 337.5; \t\t\t#temperature in K\n", "x1 = 0.842;\n", "\n", "#Antoine constants\n", "#For methanol(1)\n", "A1 = 16.12609;\n", "B1 = 3394.286;\n", "C1 = 43.2;\n", "\n", "#For methyl ethyl ketone (2)\n", "A2 = 14.04357;\n", "B2 = 2785.225;\n", "C2 = 57.2;\n", "import math\n", "\n", "# Calculations\n", "#To determine parameters in Wilson's equation\n", "P1_s = math.e**(A1-(B1/(T-C1)))\n", "P2_s = math.e**(A2-(B2/(T-C2)))\n", "x2 = 1-x1;\n", "g1 = P/P1_s;\n", "g2 = P/P2_s;\n", "\n", "#Using eq. 8.72 and rearranging:\n", "def Wils(n): \t\t\t#n is the Wilson's parameter W12\n", " y1 = (((g1*x2)/(1-(n*x1/(x1+n*x2))+(x1/x2)*math.log(g1*(x1+n*x2))))**(x2/x1))*(g1*(x1+n*x2))\n", " return y1\n", "\n", "flag = 1;\n", "W12 = 0.5; \t\t\t#assumed value\n", "while(flag==1):\n", " res = Wils(W12)\n", " if ((res-1)>=-0.09):\n", " flag = 0;\n", " else:\n", " W12 = W12+0.087;\n", "\n", "\t\t\t#For 2nd Wilson parameter:\n", "\t\t\t#Using eq. 8.72 and rearranging:\n", "k = math.log(g1*(x1+W12*x2))/x2 - (W12/(x1+W12*x2))\n", "W21 = (-k*x2)/(1+k*x1)\n", "\n", "# Results\n", "print \"wilson parameters are: %f, %f\"%(W12,W21)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wilson parameters are: 0.935000, 0.470758\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\n", "from numpy import *\n", "\n", "# Variables\n", "P = 101.3; \t\t\t#total pressure in kPa\n", "T = [333, 343, 353, 363]; \t\t\t#temperatures(K)\n", "Pa = [81.97 ,133.29 ,186.61, 266.58]; \t\t\t#Partial pressure of component A (kPa)\n", "Pb = [49.32 ,73.31, 106.63, 166.61]; \t\t\t#Partial pressure of component B (kPa)\n", "Pc = [39.32 ,62.65, 93.30, 133.29]; \t\t\t#Partial pressure of component C (kPa)\n", "xa = 0.45; \t\t\t#mole fraction of methanol\n", "xb = 0.3; \t\t\t#mole fraction of ethanol\n", "\n", "# Calculations and Results\n", "xc = 1-xa-xb; \t\t\t#mole fraction of propanol\n", "\n", "#To calculate bubble and dew point and the composition \n", "#(a). To calculate bubble point and vapour composition\n", "from matplotlib.pyplot import *\n", "plot(T,Pa);\n", "plot(T,Pb);\n", "plot(T,Pc);\n", "\t\t\t#title(\" \",\"Temperature\",\"Vapour pressures\");\n", "\t\t\t#legend(\"Pa\",\"Pb\",\"Pc\");\n", "\n", "\t\t\t#Using eq. 8.84 (Page no. 362)\n", "\t\t\t#At bubble temperature, sum(yi) = sum((xi*Pi)/P) = 1\n", "sum_y = [0,0,0,0]\n", "for i in range(4):\n", " sum_y[i] = (xa*Pa[i])/P + (xb*Pb[i])/P + (xc*Pc[i])/P;\n", "\n", "Tb = interp(1,sum_y,T); \t\t\t#obtaining temperature at which sum (yi) = 1\n", "\n", "\t\t\t#Obtaining vapour pressures at bubble temperature\n", "Pb1 = interp(Tb,T,Pa);\n", "Pb2 = interp(Tb,T,Pb);\n", "Pb3 = interp(Tb,T,Pc);\n", "\n", "\t\t\t#Calculating equilibrium vapour composition\n", "ya = (xa*Pb1*100)/P;\n", "yb = (xb*Pb2*100)/P;\n", "yc = (xc*Pb3*100)/P;\n", "\n", "print '(a).'\n", "print ' The bubble temperature is %f K'%Tb\n", "print ' The equilibrium vapour contains %f methanol, %f ethanol and %f propanol'%(ya,yb,yc)\n", "\n", "#(b). The dew point and liquid composition\n", "#Vapour phase compositions at dew point\n", "ya = 0.45; \t\t\t#methanol\n", "yb = 0.30; \t\t\t#ethanol\n", "yc = 0.25; \t\t\t#propanol\n", "\n", "sum_x = zeros(4)\n", "#At dew point, sum(xi) = sum ((yi*P)/Pi) = 1\n", "for i in range(4):\n", " sum_x[i] = (ya*P)/Pa[i] + (yb*P)/Pb[i] + (yc*P)/Pc[i];\n", "\n", "Td = interp(1,sum_x,T); \t\t\t#obtaining temperature at which sum (xi) = 1\n", "\n", "#Obtaining vapour pressures at dew temperature\n", "Pd1 = interp(Td,T,Pa);\n", "Pd2 = interp(Td,T,Pb);\n", "Pd3 = interp(Td,T,Pc);\n", "\n", "#Calculating liquid composition\n", "xa = (ya*P*100)/Pd1;\n", "xb = (yb*P*100)/Pd2;\n", "xc = (yc*P*100)/Pd3;\n", "\n", "print ' (c).'\n", "print ' The dew point is %f K'%Td\n", "print ' At dew point liquid contains %f methanol, %f ethanol and %f propanol'%(xa,xb,xc)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).\n", " The bubble temperature is 343.879659 K\n", " The equilibrium vapour contains 61.294328 methanol, 22.578783 ethanol and 16.126889 propanol\n", " (c).\n", " The dew point is 363.000000 K\n", " At dew point liquid contains 17.099932 methanol, 18.240202 ethanol and 18.999925 propanol\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlGXeB/AvoHjCIyfNIUHMAzAgHvCELuBbFFRiWXju\n3dqUslqty9Xt7W2xdwt11/XQqmHakQ7a1moraVqAKYogHhBLTAVlMGAAUZAz87x/3M7AyEGBmXlm\nmO/nuuaSOMz8fK7p64/7vp/7tpEkSQIREXVqtnIXQERExsewJyKyAgx7IiIrwLAnIrICDHsiIivA\nsCcisgKthn1VVRXGjx8Pf39/DB8+HMuWLQMAlJSU4MEHH4Svry9CQ0NRWlqq+5mYmBh4eXlBqVTi\nwIEDxq2eiIjuic3d1tlXVlaiR48eqKurQ2BgIGJiYvDNN9/A09MTS5cuxYYNG5CdnY2NGzciPT0d\nUVFRSElJQX5+PgIDA5GVlQV7e3tT/X2IiKgZdx3G6dGjBwCgpqYG9fX1cHFxwXfffYcFCxYAAObP\nn4/4+HgAQHx8PGbPng07OzsMHjwY3t7eSE1NNWL5RER0L+4a9hqNBqNHj4arqyuCg4Ph7e0NtVoN\nR0dHAICTkxMKCwsBAHl5eVAoFLqfVSgUUKlURiqdiIjuVZe7fYOtrS1Onz6NGzduIDQ0FImJiaao\ni4iIDOiuYa/Vt29fhIeH4/jx43B2dkZRURGcnJygVqvh4uICQHTyubm5up9RqVRwc3Nr8lzDhg3D\npUuXDFA+EZH18PT0xMWLF9v1s60O4xQXF6OsrAyAmKg9ePAglEolwsLCEBcXBwCIi4tDWFgYACAs\nLAw7d+5EXV0dVCoVMjMzERAQ0OR5L126BEmSLPbxl7/8RfYarLF21i//g/XL++hIk9xqZ3/t2jUs\nXLgQkiShqqoKc+fORXh4OCZNmoTIyEh88MEHGDhwIHbt2gUAGDt2LGbOnAlfX1/Y2toiNjYWXbt2\nbXdxRERkGK2GvVKpxKlTp5p8fsCAATh48GCzP/P666/j9ddfN0x1RERkELyDth2CgoLkLqHdLLl2\ngPXLjfVbrrveVGWUF7WxgQwvS0Rk0TqSnezsiYisAMOeiMgKMOyJiKwAw56IyAow7ImIrADDnojI\nCjDsiYisAMOeiMgKMOyJiKwAw56IyAow7ImIrADDnojICjDsiYisAMOeiMgKMOyJiKwAw56IyAow\n7ImIrADDnojISG7ckLuCBgx7IiIDq6oCoqMBb2+gvFzuagSGPRGRASUkAL6+QEYGkJICODjIXZHQ\nRe4CiIg6g8JC4LXXgJ9+At59F3j8cbkr0sfOnoioAzQaYPt2wMcHcHUFzp0zv6AH2NkTEbXbuXPA\n4sVAXR1w8CDg5yd3RS1jZ09E1EYVFcCf/wwEBQFz5wLJyeYd9AA7eyKiNtm/H3jxRSAgQEzCDhok\nd0X3hmFPRHQPfvsNWLoUOHEC2LIFePhhuStqm1aHcXJzczFt2jQolUqMGDECa9euBQBER0dDoVDA\n398f/v7+2Ldvn+5nYmJi4OXlBaVSiQMHDhi3eiIiI6uvBzZvFsspPT2Bs2ctL+gBwEaSJKmlLxYU\nFECtVsPHxwfl5eUYM2YMvvrqK+zevRu9e/fGq6++qvf96enpiIqKQkpKCvLz8xEYGIisrCzY29vr\nv6iNDVp5WSIis3D6tJiAtbcH3ntP3CQlp45kZ6udvaurK3x8fAAADg4O8PX1RV5eHgA0+4Lx8fGY\nPXs27OzsMHjwYHh7eyM1NbVdhRERyaW8XKyZDw0FFi0CDh2SP+g76p5X4+Tk5CAtLQ1Tp04FAGze\nvBmjRo3C/PnzUVJSAgDIy8uDQqHQ/YxCoYBKpTJwyURExvPttyLY1WoxZPPcc4BtJ1i3eE9/hfLy\ncjz11FPYuHEjevfujSVLluDSpUv4+eef4enpiVdeecXYdRIRGVVuLjBzJrB8OfDhh8AnnwAuLnJX\nZTh3XY1TW1uLJ598EnPnzkVERAQAwMnJSff1xYsXIzg4GIDo5HNzc3VfU6lUcHNza/Z5o6OjdR8H\nBQUhKCioPfUTEXVIXR3wz38Cf/0r8PLLwBdfAN27y12VkJSUhKSkJIM8V6sTtJIk4ZlnnoGjoyPW\nr1+v+3xhYSFcbv+T9+677yIxMRHffPONboL22LFjugnaX3/9FV27dtV/UU7QEpEZSEsTE7D9+gFb\ntwIjRshdUes6kp2tdvbJycmIi4uDr68v/P39AQDvvPMOPv/8c2RkZKCmpgZDhgzBjh07AABjx47F\nzJkz4evrC1tbW8TGxjYJeiIiud24AbzxBvDVV8Df/gbMnw/Y2MhdlXG12tkb7UXZ2RORDCQJ+Ppr\ncXPUI48Aa9YAAwbIXdW9M1pnT0TUWeTkAEuWiD+/+AK4vbDQanSCBUVERC2rrQXWrgXGjQMCA4FT\np6wv6AF29kTUiR09CkRFAffdBxw/LrY7sFYMeyLqdK5fB1auBPbuBf7xD+Dppzv/BOzdcBiHiDoN\nSQI+/xzw8gK6dBGHi0RGMugBdvZE1ElcvAi88ILY5mD3bmDCBLkrMi/s7InIolVXA//3f8DEiWLr\n4RMnGPTNYWdPRBbr0CExAfvAA0B6OjBkiNwVmS+GPRFZnKIisWHZDz8AmzYBEREcl78bDuMQkcWQ\nJLEjpbc30Lcv8PPPYqdKBv3dsbMnIovwyy9iyKaiAti3DxgzRu6KLAs7eyIya5WVwP/+r7jrddYs\nICWFQd8e7OyJyGwdPCiWU/r7A2fOAIMHy12R5WLYE5HZyc8HXn1VbHeweTMQHi53RZaPwzhEZDY0\nGiA2FvD1BdzcxB2wDHrDYGdPRGbh7FlxahQA/PgjoFTKW09nw86eiGR16xawYgUQEgI88wxw5AiD\n3hgY9kQkm/h4wMcHUKmAzEzR2dsylYyCwzhEZHJ5ecAf/wicPg1s2wY8+KDcFXV+/DeUiEymvh54\n913Azw8YNUqM0zPoTYOdPRGZxMmTYpimZ0/g8GER9mQ67OyJyKjKyoBly4BHHgFefBFISmLQy4Fh\nT0RGIUnAv/8tNi0rLRVr5n//e25aJhcO4xCRwV25Arz8MnDhAvDJJ0BQkNwVETt7IjKYujpg3Tpg\n7Fhg/Hixnw2D3jywsycigzh+XEzAOjsDx46J06PIfLCzJ6IOKS0VE68REeL0qAMHGPTmiGFPRO0i\nScDOnWICtr5enBo1bx4nYM0Vh3GIqM0uXxbdfF4e8NVXwOTJcldEd9NqZ5+bm4tp06ZBqVRixIgR\nWLt2LQCgpKQEDz74IHx9fREaGorS0lLdz8TExMDLywtKpRIHDhwwbvVEZFI1NcA77wABAUBwsLhR\nikFvGWwkSZJa+mJBQQHUajV8fHxQXl6OMWPG4KuvvsL27dvh6emJpUuXYsOGDcjOzsbGjRuRnp6O\nqKgopKSkID8/H4GBgcjKyoK9vb3+i9rYoJWXJSIzdOSImIB1dwf++U/Aw0PuiqxPR7Kz1c7e1dUV\nPj4+AAAHBwf4+voiLy8P3333HRYsWAAAmD9/PuLj4wEA8fHxmD17Nuzs7DB48GB4e3sjNTW1XYUR\nkXkoKQH+8AcgMhJYtQrYu5dBb4nueYI2JycHaWlpCAwMhFqthqOjIwDAyckJhYWFAIC8vDwoFArd\nzygUCqhUKgOXTESmIEnihigvL6BHDzEBO2sWJ2At1T1N0JaXl2PWrFnYuHEj+vTpY5AXjo6O1n0c\nFBSEIN55QWQ2srLEBOz168B//iNukCLTS0pKQlJSkkGe665hX1tbiyeffBLz5s1DREQEAMDZ2RlF\nRUVwcnKCWq2Gi4sLANHJ5+bm6n5WpVLBzc2t2edtHPZEZB6qqoDVq8WY/BtvAC+9BHThmj3Z3NkI\nr1q1qt3P1eowjiRJeO655+Dl5YVly5bpPh8WFoa4uDgAQFxcHMLCwnSf37lzJ+rq6qBSqZCZmYmA\ngIB2F0dEppOQIPaZP3MGOHUKWLqUQd+ZtLoa58iRI5g2bRp8fX1hc3ugLiYmBgEBAYiMjERBQQEG\nDhyIXbt2oV+/fgCAd955B3FxcbC1tcW6desQGhra9EW5GofIbKjVwGuvAYcOiYNFHn9c7oqoJR3J\nzlbD3lgY9kTy02iADz4AXn8dWLBArLRxcJC7KmpNR7KTv6QRWaFz54CoKHGT1IEDwOjRcldExsa9\ncYisSEWF6OSDgoA5c4CjRxn01oKdPZGV2L8fWLIEGDcOyMgABg2SuyIyJYY9USf322/iDNjUVGDL\nFuDhh+WuiOTAYRyiTur6deDvfwd8fYGhQ4HMTAa9NWNnT9TJnDwJbN0K/OtfwCOPAImJwO0trsiK\nMeyJOoGqKrGv/JYtYo/5qCjg/HnA1VXuyshccJ09kQXLzgbeew/48EPA31/sZxMezjtfOyujbXFM\nROanvh747jvg0UfFBmV1dUByMvD998CMGQx6ah7fFkQWoqhI3PH63ntA//5iGeWuXUDPnnJXRpaA\nYU9kxiRJLJncvBn49lsgIgL48kvR0XNfeWoLjtkTmaGKCuCLL8SEa2kp8MILwO9/D9w+M4isFDdC\nI+okLlwQyyY/+UQc5P3ii0BoKGDL2TUCN0Ijsmh1deJc1y1bxF7yzz4LpKeLg72JDIVhTyST/Hxg\n+3YgNhZwcxMTrrNmAd26yV0ZdUYMeyITkiTgyBHRxe/fDzz1lJh49feXuzLq7DhmT2QCZWVAXJwI\n+dpaMRa/cCFw+4A3onvCMXsiM3XunAj4L74AgoOBjRvFn1w2SabGsCcysJoaYPduEfIXLgDPPy/2\nj1co5K6MrBkXdBEZiEoFvPkmMGSIWD65ZAlw5Yo425VBb10kScKhnEN4ZvczqK2vlbscAOzsiTpE\nkoCEBHGHa1ISMHcu8MMPgLe33JWRHDSSBt9mfYs1yWtQXFGM5ZOXy12SDsOeqB1KS4GPPxYdvL29\nmHD9+GOgd2+5KyM51NTX4LOMz7D26Fo42DtgxZQVmDlyJuxs7eQuTYdhT9QGp06JsXjtwSDbtwNT\npnDC1VqVVZfh/ZPvY33KeoxyGoXNYZsR7B4MGzN8QzDsie6iqkqE++bN4mCQxYuBX34BBg6UuzKS\nS+GtQrx7/F28l/4eQjxCsGf2HowZNEbuslrFsCdqQXa2uLv1gw/ETU8rV/JgEGuXfT0b646tw+dn\nP8fT3k/j2HPHMGzAMLnLuid82xI1otGIQ0C2bAGOHRM3PiUnAw88IHdlJKcz+Wew9uhafH/xezw/\n5nn8vORnDHSwrF/teActEcTBIB9+KCZctQeDzJ7Ng0GsmSRJ+OnKT1idvBpn8s9g2cRlWDxuMfp0\n6yNbTbyDlqgdtAeDbNki9qeZMYMHg1DD8snVR1ajpLIEyycvx78j/43uXbrLXVqH3PWmqmeffRau\nrq5QKpW6z0VHR0OhUMDf3x/+/v7Yt2+f7msxMTHw8vKCUqnEgQMHjFM1UQdUVIhx+PHjgTlzAB8f\n4OJF4KOPgIAABr21qqmvwYenPoT3Fm+8ffhtLJ+8HL8s+QXPj33e4oMeuIdhnMOHD8PBwQELFy7E\n2bNnAQCrVq1C79698eqrr+p9b3p6OqKiopCSkoL8/HwEBgYiKysL9vb2+i/KYRySwYUL4vzWTz4B\nJk3iwSAklFWXYVv6NqxPWQ9vF2+smLLCbJdPdiQ77/o2nzp1Kvr379/k8829YHx8PGbPng07OzsM\nHjwY3t7eSE1NbVdhRIZQVwfs2QM89BAQGCj2ik9LA/7zH7FOnkFvvQpvFeKNhDcwdNNQpF1Lw7dz\nvsX3879HiEeIWQZ9R7X7rb5582aMGjUK8+fPR0lJCQAgLy8PikabgCgUCqhUqo5XSdRGBQXA228D\nQ4cCa9aIVTVXrwIxMYCHh9zVkZyyr2djSfwSjPznSBRXFOPYc8fw5awvzX6dfEe1a4J2yZIlePPN\nNwGI8ftXXnkFcXFxbXqO6Oho3cdBQUEICgpqTylEOs0dDLJnDw8GIeFM/hmsSV6DA5cOYNHYRRax\nfDIpKQlJSUkGea52hb2Tk5Pu48WLFyM4OBiA6ORzc3N1X1OpVHBzc2v2ORqHPVFHlJUBn30mQr66\nWozFb93Kg0Ho9u6TVw5hTfIa3fLJ9x59T9blk21xZyO8atWqdj9Xu4ZxCgsLdR9//fXX8L69xV9Y\nWBh27tyJuro6qFQqZGZmIiAgoN3FEbXm3DngpZfElsIHDwLr1wPnzwN//COD3tppJA3+/cu/MWnH\nJCzeuxhPjnoS2X/MxvIpyy0m6A3trp39nDlzcOjQIRQVFcHNzQ2rVq1CYmIiMjIyUFNTgyFDhmDH\njh0AgLFjx2LmzJnw9fWFra0tYmNj0bVrV6P/Jch61NY2HAySlcWDQUhfTX0N4jLi8Lejf0Nv+95Y\nMWUFIkZGmNXuk3LhHbRkEVQq4P33xWP4cDFUExEhthcmsqTlkx3BO2ipU9IeDLJlC5CYKA4GOXiQ\nB4NQg8Jbhdh0fBPeO/Ee/mvof+E/c/4D/0GckW8Ow57MTmmpuPFpyxaga1exT81HH/FgEGpw+fpl\nrDu6Dl9kfoFI70gc/8NxeA7wlLsss8awJ7Nx+rQI+K++Ah5+WAzZBAZy+wJqcOfyyV+W/AJXB1e5\ny7IIDHuSVXV1w8EgublAVBQPBiF9jZdPZhRkWNzySXPBCVqSRU5Ow8Egfn5iqIYHg1BjGkmDPef3\nYE3yGlyvuo7lk5djge8CdOvSTe7SZMMJWrIIzR0McviwWF1DpFVdV43Pzn6Gtclr0adbH6wMXIkZ\nI2Zw+WQHMezJ6IqLGw4G6ddPdPE7d/JgENJXVl2G2PRYbEjZAG8Xb2wN34og96BOt3xSLgx7MgpJ\nEsf5bdsmdph8/HHg88+5Xzw11emWT9bWAocOibv/fvgBOHUK6NFD7qoY9mRYJSXAp5+KkK+vBxYt\nAv7xD6DRdkpEAMTyyb8f/Tu+zPwSs31mW/byyZs3xe57e/YA+/YBI0aIo8927zaLoAcY9mQA2t0m\ntV38o4+KIZupU9nFU1On809jTfIaHLx0EIvHLrbc5ZO//SbOs9yzR/wPEBgoAv7vfwcGDZK7uia4\nGofarbi4oYuXJNHFL1wIODrKXRmZG+3yydVHVuNs4Vksm7gMi8Yusrzlk+fPi259925x9Nkjj4iA\nf/hhoI/x/y4dyU6GPbWJJIkVNNu2AXv3Ao89JkKeNz9Rc7TLJ1cnr0ZpVSn+NPlPmO8733KWT2o0\nQEqK6N537wZu3RKbMkVEANOmmXxzJoY9GV1xMfDxxyLkbW2BxYuBBQuAAQPkrozMUXVdtW73yb7d\n+2LFlBWWs3yyqgr48UcR8N9+Czg7NwT8mDGydjUMezIKSQJ++kkEfHy8WFGzaBEwZQq7eGrezeqb\n2Ja+DRtSNsDHxQcrpqywjOWT16+LN/mePWK3PT8/MTwzYwbgaT6Txgx7MqiiItHFv/8+YGcnuvj5\n89nFU8sKyguw6fgmxKbH4kHPB/GnyX8y/+WTV682DM+kpQEhISLcH31UdPNmiHfQUodJklgavG0b\n8N134j2/YwcweTK7eGqZRS2flCTg7NmGCdbcXBHsL78MPPgg0KuX3BUaFcPeyhUVie2D339fbCe8\neLHYlKx/f7krI3NmMcsn6+rEskhtB29jI8be168X45FWtBmT9fxNSUeSgKQk0cXv2yfe+x9+CEya\nxC6eWiZJEpJykrAmeY1u+WTso7Hmt3zy1i3gwAER8Hv3ikOKIyLEZKuPj9W+yTlmb0UKCxvG4rt1\nE138vHns4ql1GkmD3ed3Y03yGtyouoHlk5eb3/JJtVrc0bd7t+hkAgJEwD/+OHD//XJXZzCcoKUW\naTQNXfz+/cDMmWJFzcSJVtvg0D3SLp9ce3Qt+nXvh5VTVmLGyBmwtbGVuzTh4sWG4ZmzZ4GHHhKT\nTWFhnbaDYdhTE4WFDWPxPXo0dPH9+sldGZk77fLJ9SnroXRRYmXgSvxuyO/kXz4pScCJEw0BX1Qk\nwj0iAggOBrp3l7c+E+BqHAIguvjERHEoyIEDwBNPiO0MJkxgF093d+fyyb1z9sq/fLKmRvxqumeP\neDg4iHDfvl0M1diayW8ZFoBh3wkUFDR08b16iS7+/feBvn3lrowsQePlk3N85iD1+VQM7T9UvoJu\n3hQrB7Q7SI4aJTr4H34ARo6Ury4Lx7C3UBoNkJAgxuIPHhRd/Gefcb94unenfjuFNclr8MPlHxA1\nLgrnXzoPl14u8hRz7ZpYLbN7N3D0qNgydcYMYN06s9xB0hJxzN7C5Oc3dPG9e4sufu5cdvF0b7TL\nJ1cnr0ZmYSZenfgqFo1dhN7depu6EP0dJH/9VUysaneQ7G3ieiwEJ2g7OY1G/Aa7bZvYn+nJJ8WK\nmvHj2cXTvanX1GNP1h6sPrIaN6tv4k9T/oR5ynmmXT5ZX6+/g2Rlpf4Okl27mq4WC8Ww76Ty88XN\nTtrxd20Xb4Jts6mTkH35ZGWl/g6Srq4NAe/vz26ljRj2nYhGI8bgt20TY/KzZokuftw4/n9Bd6eR\nNDhbcBYJ2QlIyEnA4SuHMVEx0bTLJ0tKxA6S2jNYR48W4T5jBjBUxonfTsCoYf/ss88iPj4eLi4u\nOHv2LACgpKQEkZGRKCgowKBBg7Bz5070u72AOyYmBp9++ins7Oywbt06PPTQQwYtuLP67beGLr5/\nf9HFz5nDLp5aJ0kSLpZcxI/ZPyIhOwGJOYno370/QjxCMN1jOoLcg+DcywQ7OF650jA8c+IEMH16\nww6SPIDYYIwa9ocPH4aDgwMWLlyoC/uXX34Znp6eWLp0KTZs2IDs7Gxs3LgR6enpiIqKQkpKCvLz\n8xEYGIisrCzY33GaC8Ne0GjEevht28T6+KeeaujiiVqiuqlCQnaCLuAlScL0odMR4h6CEI8QuPV1\nM34RkgScOdMQ8CqVOLZsxgyxg2TPnsavwQoZfRgnJycHjz32mC7sPT09kZqaCkdHRxQVFWHixIm4\nePEi3nrrLfTq1QuvvfYaAODRRx/FypUrERgYaLCCO4Nr1xq6eCcnEfBz5nABAjVPfUuNpJwkXcCX\nVJYg2CMY0z2mI8QjBA8MeMA0wzN1deJMSm3A29k1DM9MnmxVO0jKxeR30KrVajjePlXayckJhYWF\nAIC8vDyEhITovk+hUEClUrWrsM6mvr6hi09KAp5+Gvj6a2DsWLkrI3Nzs/omfrrykxh3z05Admk2\npt4/FSEeIYgaFwWlq9J0E6y3bgHffy/C/bvvAHd3EfB79wLe3pxIsiCy/VMcHR2t+zgoKAhBQUFy\nlWJU164BH3wg7u52dhZd/CefsIunBpW1lTimOoYfL/+IhJwEnC04iwmKCQhxD8HW8K0Yd984dLUz\n4bLEwsKGHSQPHRL7bUREAG+/DbiZYIiIdJKSkpCUlGSQ52pX2Ds7O6OoqAhOTk5Qq9VwcRF33SkU\nCuTm5uq+T6VSwa2FN0fjsO9s6utFM7RtmzjDNTIS+OYbcVYxUZ2mDml5abphmdS8VChdlZjuMR1v\nh7yNSYpJ6NG1h2mL+vXXhuGZzEwgNFSMLX76KXfPk9GdjfCqVava/VztCvuwsDDExcVh6dKliIuL\nQ1hYmO7zUVFRWLp0KfLz85GZmYmAgIB2F2dp8vIaunhXV9HFx8WJvZvIemmXQ2onVA9fPQyPfh4I\n8QjBa5New9QhU01/AIhGI1bN7N4tQr6kRIy9v/GG2EGymxntVU8GcdcJ2jlz5uDQoUMoKiqCq6sr\n3nrrLcyYMUO39HLgwIHYtWuXbunlO++8g7i4ONja2mLdunUIDQ1t+qKdaIK2vl7sE79tm5i7iowU\nIe9v5mctk/FIkoRfS37Vde6J2Ylw7OmoWy0T7BEMp54yLEesqRHLvnbvFjc49enTcIPT+PHcQdIC\n8KYqGahUDV38oEEi4CMj2cVbq9wbubobmRKyEwBAt1om2D3YNMshm1NaKrqR3bvF2OKoUQ0raEaM\nkKcmajeGvYnU14sdV7dtE2cYz5kDPP+8uEGQrIv6lhqJOYm6FTPXq64j2L1hOeSwAcPkOezjt9/E\nr5jax8WLwO9+JwL+sceAgQNNXxMZDMPeyHJzgR07xGPw4IYuvlcvuSsjU9Euh9SumMkpzcG0IdN0\nQzMmXQ6pJUkizBuHe0kJMGWK2CJ42jSxKuCOmxrJcjHsjaCurqGLT04WXfyiRYCfn9yVkSlU1lbi\naO5R3bh7ZmEmJigm6Dr3cfeNQxdbE69crq8XZ602Dnc7OxHs2oe3N8feOzGGvQFdvdrQxbu5iYB/\n+ml28Z1dbX0t0q6l6YZlUvNS4evqq9tjZpLbJHTvYuIzTqurgbS0hmA/elQMwzQOd3d33thkRRj2\nHVRXJ24O3LYNOHZMbCP8/POAr6/clZGxaCQNMgoydMMyR64ewdD+Q3XDMtOGTDP9gR43b4pA14b7\nyZPiGD5tsAcGAi4ynSRFZoFh305XrogO/oMPgPvvb+jiuYdT5yNJEi4UX9CtmNEuh9QOywS5B5l+\nOWRBgf6QzIULYhc8bbhPmsRbrUkPw74N6urEVtuxscDx48C8eaKLVyplKYeMKPdGru5GpoTsBNjY\n2GC6x3RM95iOYI9gKPooTFeMJAGXL+uHu1rdMJk6darYKIk3M1ErGPb34MoVsSb+gw/EMOeiRWJL\nYXbxnUfhrUIk5STphmZKq0oR4hGCEPcQTB86HZ79PU23HFKjaTqZamOjP97u48PJVGoThn0ramvF\nEuOUFGD+fNHF+/iY5KXJyG5U3dDtDvlj9o+4euOqWA7pIcbdfVx8TLccsrpabD/QeDLV2Vksf9SG\nu4cHJ1OpQxj2d7F/v/h/jl28ZausrURybrJuWOac+hwmDG5YDjn2vrGmWw5ZVqY/mZqeDgwfrj+Z\nyhuYyMAY9tQpaZdDaodl0vLS4DfQTzcsM1Ex0XTLIQsL9YdksrLEDUvacJ88mWdIktEx7KlT0Ega\nnMk/oxuWOXL1CIYNGKYblpl6/1TTLIeUJCAnRz/c8/NFoGvDffx4TqaSyTHsySJJkoSs4izdsExi\nTiKcezqKEj2GAAANVklEQVTrLYd07Olo/EI0GuDcOf1wr6/Xn0xVKsXdqkQyYtiTxbh646puWCYh\nOwF2NnaYPvT2ckj3YAzuM9j4RdTUiDF2bbAnJwOOjvrh7unJyVQyOwx7MkuSJOHKjSs4rjquW+9+\ns/qmblhmusd0DO0/1PjLIcvLxa3R2nA/cQIYNkx/MnXQIOPWQGQADHuSXXVdNX5W/4zT+adxpuCM\n7s+eXXti3H3jdNsQeLt4G385pFot9qDWhvsvv4jTZBpPpvbta9waiIyAYU8mVVxRrAt0bahfKL4A\nz/6eGD1wtO7h5+oH517Oxi/oyhVx2K823K9dE1sNaLf5HT8e6G7iTcyIjIBhT0ahkTS4fP0yzuTf\nDvYCEe43q2/C19UXo10bgt3bxds0yyA1GtGpN55Mra7WH2/38+NkKnVKDHvqsMraSmQWZup17BkF\nGejfo7+uS9cGu3s/d9PdmVpbK3Z/1Ab7kSNAv3764f7AA5xMJavAsKc2KbxVqDcEczr/NC5fv4wR\njiP0hmD8BvphQI8Bpi3u1i2xt4U23FNTgaFD9cP9vvtMWxORmWDYU7PqNfW4WHJRF+ynC07jTP4Z\nVNVVwW+gn94wzCjnUbC3k+H4uuJi/cnUzExxqG/jydT+/U1fF5EZYtgTbtXcwtnCsw3Bnn8amYWZ\ncHVw1RuCGT1wNNz6uMlzGDYgjgJrPN6em9swmTp1KhAQAPToIU9tRGaOYW9FJEnCb+W/iSGY/DO6\nSdPcG7nwcvbSG1/3dfVF3+4yLjGsqgJ+/ln/aL3KyqaTqV1MfJYrkYVi2HdSdZo6ZBVlNRlflyCJ\nLv32MIzfQD+McByBrnZd5SlUkoC8PCAjQzzOnBF/Xr4sbl5qvGHY8OGcTCVqJ4Z9J3Cz+iYyCjL0\ngv1n9c9Q9FE0GYYZ5DBIvmGYykrRrWsDXfunnZ3o0n19G/4cNYqbhREZEMPegkiShNybuU3WrheU\nF8DHxUdvGEbpqoSDvYNchYpu/c5Qz84WSx3vDHbu3U5kdAx7M1VTX4Nf1L/orV0/nX8a3bp00w3D\n+A0Uwf7AgAdgZyvTjUCVlWLXxzuD3d5eP9C13bq9DKt2iIhhbw6uV17X2xPmdP5pZBVlwb2fe5Mt\nBFwdXOUpUpLE6pc7x9ZzcsRY+p3duqtMdRJRs2QLe3d3d/Tp0wd2dnbo2rUrUlNTUVJSgsjISBQU\nFGDQoEHYuXMn+vXrZ7CC5SZJEnJKc5qsXS+uLBY3IjUaX/d28UbPrjKdhVhR0Xy33r27fqD7+QEj\nRrBbJ7IAsoW9h4cH0tPTMWBAw12WL7/8Mjw9PbF06VJs2LAB2dnZ2Lhxo8EKNqWquirdTo6NtxDo\n3a13k2GYof2Hmm4Lgca03fqdoX7ligjxO7t1FxfT10hEBiFr2J84cQKOjg2nCXl6eiI1NRWOjo4o\nKirCxIkTcfHiRYMVbCxFFUVNJk0vlVzCsAHDmgzDmOT0pObcutV8t96zZ9Ox9ZEjga4yLcUkIqOQ\nLeyHDh2Kfv36oa6uDosWLcJLL72EPn364ObNm7rvufO/O1pwR2kkDS6VXNIbWz+dfxrlNeVNthDw\ncvZCty4yLB2UJNGZ3zm2npvbfLfubIJthIlIdh3Jzg7dupiSkgIXFxeo1Wo8/PDDGDlyZEeezig0\nkgbbT27XhXtGQQacejrpuvQ/jPkDRg8cjSF9h8izdv3WLbEfTONu/exZoFevhkCfOROIjhaTqOzW\niagdOhT2LrfHf52dnTFr1iykpaXB2dkZRUVFcHJyglqt1n3PnaKjo3UfBwUFISgoqCOltMjWxhaZ\nhZkY6TQSkd6R8Bvoh37d+939Bw1N263fOQSjUokhF22X/sQT4nBrdutEVi8pKQlJSUkGea52D+NU\nVFQAAHr27Ilbt24hLCwMr732Gg4ePKiboF2/fj2ys7OxadMm/Rc1wzF7gyovb75b79276dg6u3Ui\nukeyjNlnZ2cjIiICNjY2qKiowOzZs/HWW2/pLb0cOHAgdu3a1amWXurRaMQa9TvH1vPyxM1HjcfW\nlUrAyUnuionIgvGmKlMoK2u+W+/bt+m69Qce4E6ORGRwDHtD0nbrd46tX7sGeHk17dYdZVqGSURW\nh2HfXmVlojtvHOyZmeKM0zvH1tmtE5HMGPZ3o9GIvdXvHFvPz2++W290RzARkblg2LdGoxHb7/bo\n0XRsfdgwsQ87EZEFYNjfTVmZWPZIRGTBGPZERFagI9kpwzaNRERkagx7IiIrwLAnIrICDHsiIivA\nsCcisgIMeyIiK8CwJyKyAgx7IiIrwLAnIrICDHsiIivAsCcisgIMeyIiK8CwJyKyAgx7IiIrwLAn\nIrICDHsiIivAsCcisgIMeyIiK8CwJyKyAgx7IiIrwLAnIrICDHsiIitglLDfv38/lEolvLy8sGbN\nGmO8BBERtYHBw766uhovvPAC9u/fj4yMDPzrX//CqVOnDP0yskpKSpK7hHaz5NoB1i831m+5DB72\nx48fh7e3NwYPHowuXbogMjIS8fHxhn4ZWVnyG8aSawdYv9xYv+UyeNirVCq4ubnp/luhUEClUhn6\nZYiIqA0MHvY2NjaGfkoiIuooycB++uknKTw8XPffa9eulf7617/qfY+np6cEgA8++OCDjzY8PD09\n253NNpIkSTCgqqoqjBw5EsnJyXBxccHkyZMRGxuLMWPGGPJliIioDboY+gm7d++OrVu3IjQ0FBqN\nBgsWLGDQExHJzOCdPRERmR+DT9BWVVVh/Pjx8Pf3x/Dhw7Fs2TIAwBtvvAE/Pz/4+Phg2rRpuHz5\nsu5nYmJi4OXlBaVSiQMHDhi6pDZpa/05OTno0aMH/P394e/vjxdffFHO8lusX2vdunWwtbVFSUmJ\n7nOWcP217qzfnK5/S7VHR0dDoVDoaty3b5/uZyzh2t9Z//79+wGY17UHWn/vvPvuu/Dz84NSqcTy\n5ct1n7eE6w80X3+br3+7R/tbUVFRIUmSJNXW1koTJkyQEhISpLKyMt3XN23aJC1cuFCSJEk6ceKE\nNG7cOKmurk5SqVSSu7u7VF1dbYyy7llb6s/OzpZ8fHxkqbMlzdUvSZJ09epVKTQ0VHJ3d5eKi4sl\nSbKc6y9Jzddvbte/udqjo6OldevWNfleS7n2LdVvbtdekpqvf+/evVJ4eLhUW1srSZIkFRUVSZJk\nOde/pfrbev2Nsl1Cjx49AAA1NTWor6+Hq6srHBwcdF8vLy/HoEGDAADx8fGYPXs27OzsMHjwYHh7\neyM1NdUYZd2zttRvjpqrHwBeffVVrF27Vu97LeX6A83Xb25aql1qZrTUkq59c/Wbozvrd3Fxwfbt\n27FixQp06SKmKB0dHQFYxvVvrf62MkrYazQajB49Gq6urggODoaXlxcA4H/+539w//3346OPPsKf\n//xnAEBeXh4UCoXuZ83hJqy71f/xxx9j5cqVuu/PycnB6NGjMXnyZCQkJMhVtk5z9e/ZswcKhQK+\nvr5632sp17+l+gHzuv4tvXc2b96MUaNGYf78+bohKEu59kDz9QPmde2BpvV7e3vj/Pnz+P777zF6\n9GhMmjQJR48eBWAZ17+1+oE2Xn9D/xrSWGlpqTRhwgQpMTFR7/MxMTHSf//3f0uSJEmLFi2Svvzy\nS93XFi9eLH3xxRfGLOue3Uv91dXV0o0bNyRJkqSTJ09K9913n3T9+nVTl9osbf3x8fHShAkTdHW6\nu7vrfhW0hOvfWv3mev0bv3fUarWk0WgkjUYjvfnmm9K8efMkSbKMa99a/eZ67SVJv/7hw4dLr7zy\niiRJkpSamiq5ublJ9fX1FnP9m6tfo9G0+fobdYvjvn37Ijw8HCkpKXqfnzt3Lo4dOwZA/Guam5ur\n+9qd2y3I6V7qt7e3R58+fQAA/v7+8PHxwfnz501ea3O09Z88eRLZ2dnw8/ODh4cHVCoVxo4di4KC\nAou4/i3VX1hYaLbXv/F7x8nJCTY2NrCxscHixYuRlpYGwHLe+y3Vb67XHtCv383NDU888QQAYPz4\n8bC3t7eY935r9bf1+hs87IuLi1FWVgYAqKysxMGDB6FUKpGTk6P7nj179kCpVAIAwsLCsHPnTtTV\n1UGlUiEzMxMBAQGGLuuetbX+kpISaDQaAOJXqszMTAwbNszkdWs1V7+/vz8KCgqQnZ2N7OxsKBQK\nnDx5Eq6urhZx/Vuq38XFxayuf0vvHbVarfuer7/+Gt7e3gAs573fUv3mdO2BlusPDw/XDXFcuHAB\nFRUVFvPeb6n+9rz3DX5T1bVr17Bw4UJIkoSqqirMnTsX4eHheOKJJ3Dp0iXU1tbCw8MD27dvBwCM\nHTsWM2fOhK+vL2xtbREbG4uuXbsauiyj1Z+YmIi//OUvsLW1hSRJ2LRpE5ycnMyu/sYa719kKde/\nscb1m9P1b6n2BQsWICMjAzU1NRgyZAh27NgBwHKufUv1m9O1b63+hx56CM8++yx8fHwAAB999BFs\nbW0t5vq3VH9brz9vqiIisgI8lpCIyAow7ImIrADDnojICjDsiYisAMOeiMgKMOyJiKwAw56IyAow\n7ImIrMD/A7UqI330WejFAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given:\n", "\n", "P = 1447.14; \t\t\t#pressure of the system (kPa)\n", "x = [0.25 ,0.4, 0.35]; \t\t\t#composition of the components\n", "T = [355.4 ,366.5]; \t\t\t#assumed temperatures (K)\n", "K1 = [2.00, 0.78 ,0.33]; \t\t\t#value of Ki at 355.4 K \n", "K2 = [2.30, 0.90 ,0.40]; \t\t\t#value of Ki at 366.5 K\n", "\n", "\n", "# Calculation and Result\n", "\n", "Kx = [0, 0];\n", "for i in range(3):\n", " Kx[0] = Kx[0]+K1[i]*x[i];\n", " Kx[1] = Kx[1]+K2[i]*x[i];\n", "\n", "Tb = interp(1,Kx,T);\n", "\n", "#At Tb K, from Fig. 13.6 of Chemical Engineer's Handbook\n", "Kb = [2.12 ,0.85 ,0.37]\n", "\n", "#Calculation of vapour composition\n", "y1 = Kb[0]*x[0]*100;\n", "y2 = Kb[1]*x[1]*100;\n", "y3 = Kb[2]*x[2]*100;\n", "\n", "print '(a).'\n", "print ' The bubble point temperature is %f K'%Tb\n", "print ' At bubble point vapour contains %f percent propane, %f percent butane and %f percent pentane'%(y1,y2,y3)\n", "\n", "#(b). The dew point temperature and composition of the liquid\n", "T = [377.6 ,388.8]; \t\t\t#assumed temperatures (K)\n", "y = [0.25, 0.40, 0.35]; \t\t\t#vapour composition at dew point\n", "K1 = [2.6, 1.1, 0.5]; \t\t\t#at 377.6 K\n", "K2 = [2.9, 1.3, 0.61]; \t\t\t#at 388.8 K\n", "\n", "#At dew point, sum(yi/Ki) = 1\n", "Ky = [0, 0];\n", "for i in range(3):\n", " Ky[0] = Ky[0] + y[i]/K1[i];\n", " Ky[1] = Ky[1] + y[i]/K2[i];\n", "\n", "Td = interp(1,Ky,T);\n", "\n", "#At Td K,\n", "Kd = [2.85, 1.25, 0.59];\n", "\n", "#Calculation of liquid composition\n", "x1 = y[0]*100/Kd[0];\n", "x2 = y[1]*100/Kd[1];\n", "x3 = y[2]*100/Kd[2];\n", "\n", "print ' (b).'\n", "print ' The dew point temperature is %f K'%Td\n", "print ' Liquid at dew point contains %f percent propane, %f percent butane and %f percent pentane'%(x1,x2,x3)\n", "\n", "#(c). Temperature and composition when 45% of initial mixture is vaporised\n", "#Basis: \n", "F = 100; \n", "V = 45; \n", "L = 55;\n", "\n", "#For the given condition eq. 8.91 (Page no. 364) is to be satisfied\n", "#sum(zi/(1+ L/(VKi))) = 0.45\n", "\n", "z = [0.25, 0.4, 0.35];\n", "T = [366.5 ,377.6]; \t\t\t#assumed temperatures\n", "K1 = [2.3 ,0.9 ,0.4]; \t\t\t#at 366.5 K\n", "K2 = [2.6 ,1.1 ,0.5]; \t\t\t#at 377.6 K\n", "\n", "Kz = [0 ,0];\n", "for i in range(3):\n", " Kz[0] = Kz[0] + z[i]/(1 + L/(V*K1[i]));\n", " Kz[1] = Kz[1] + z[i]/(1 + L/(V*K2[i]));\n", "\n", "#The required temperature is T3\n", "T3 = interp(.45,Kz,T);\n", "\n", "#At T3 K\n", "K3 = [2.5, 1.08, 0.48];\n", "\n", "#Calculating liquid and vapour compositions\n", "for i in range(3):\n", " y[i] = (z[i]/(1 + L/(V*K3[i])))/0.45;\n", " x[i] = ((F*z[i]) - (V*y[i]))/L;\n", " print (x[i]);\n", "\n", "\n", "print ' (c).'\n", "print ' The equilibrium temperature is %f K'%T3\n", "print ' Liquid composition in equilibrium is %f percent propane, %f percent butane \\\n", "and %f percent pentane'%(x[0]*100,x[1]*100,x[2]*100)\n", "print ' Vapour composition in equilibrium is %f percent propane, %f percent butane \\\n", "and %f percent pentane'%(y[0]*100,y[1]*100,y[2]*100);\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).\n", " The bubble point temperature is 360.855932 K\n", " At bubble point vapour contains 53.000000 percent propane, 34.000000 percent butane and 12.950000 percent pentane\n", " (b).\n", " The dew point temperature is 388.800000 K\n", " Liquid at dew point contains 8.771930 percent propane, 32.000000 percent butane and 59.322034 percent pentane\n", "0.149253731343\n", "0.3861003861\n", "0.456919060052\n", " (c).\n", " The equilibrium temperature is 374.651845 K\n", " Liquid composition in equilibrium is 14.925373 percent propane, 38.610039 percent butane and 45.691906 percent pentane\n", " Vapour composition in equilibrium is 37.313433 percent propane, 41.698842 percent butane and 21.932115 percent pentane\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from numpy import array\n", "\n", "# Variables\n", "P = 101.3; \t\t\t#total pressure (kPa)\n", "x1 = array([0.003, 0.449, 0.700, 0.900])\n", "y1 = array([0.432, 0.449, 0.520, 0.719])\n", "P1 = [65.31 ,63.98, 66.64, 81.31]; \t\t\t#(kPa)\n", "P2 = [68.64 ,68.64, 69.31, 72.24]; \t\t\t#(kPa)\n", "\n", "import math\n", "\n", "# Calculations\n", "#To test whether the given data are thermodynamically consistent or not\n", "x2 = 1-x1;\n", "y2 = 1-y1;\n", "g1= [0,0,0,0]\n", "g2 = [0,0,0,0]\n", "c=[0,0,0,0]\n", "import math\n", "for i in range(4):\n", " g1[i] = (y1[i]*P)/(x1[i]*P1[i])\n", " g2[i] = (y2[i]*P)/(x2[i]*P2[i])\n", " c[i] = math.log(g1[i]/g2[i]) \t\t\t#k = ln (g1/g2)\n", "from matplotlib.pyplot import *\n", "plot(x1,c)\n", "\t\t\t#a = get(\"current_axes\"\n", "\t\t\t#set(a,\"x_location\",\"origin\"\n", "\n", "# Results\n", "show()\n", "\t\t\t#As seen from the graph net area is not zero\n", "print 'The given math.experimental data do not satisfy the Redlich-Kistern criterion'\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH7RJREFUeJzt3XtUlOW+B/DvIKikIqKAKWjFNrnfxAsmMGy8A0qhqcfT\ntovuVpfV0Vpt29vacbJtkbbdVqelpmWZnnapZXihzBwuHneRWmaltUszVARRRARU4Dl/PA0DWTrM\nvDPPzDvfz1qzFtT0vt/VOX579/M+7+81CCEEiIhIF7xUByAiIu2w1ImIdISlTkSkIyx1IiIdYakT\nEekIS52ISEfsLvWamhpMnToVcXFxiIiIwJ49e7TIRURENjDYu0996tSpuO222zBjxgy0tLSgrq4O\nfn5+WuUjIqIOsKvUq6urMWLECHz33XdaZiIiIhvZtfzy3XffITAwELfffjuio6Pxhz/8AXV1dVpl\nIyKiDrKr1FtaWlBWVoZHH30UBw8eREBAABYuXKhVNiIi6ihhh2PHjomBAwe2/l5SUiLGjh3b7jth\nYWECAD/88MMPPx34hIWF2dTLdl2ph4aGok+fPvj2228BAB999BEiIiLafef777+HEMKlPk8++aTy\nDO6QyVVzMRMzeUKu77//3qZe9ran1AFg9erVmDlzJurr6zFw4ECsW7fO3kMSEZGN7C71uLg4lJWV\naZGFiIjs5JFPlBqNRtURruCKmQDXzMVM1mEm67lqLlvY/fDRNU9gMMDBpyAi0h1bu9Mjr9SJiPSK\npU5EpCMsdSIiHWGpExHpiFNKvbzcGWchIiKnlHpKCsBBjkREjueUUl+wAEhLAz7/3BlnIyLyXHY/\nUWqN2bMBf39g7Fhg40Z55U5ERNpz2o3SKVOAdeuA3Fxg61ZnnZWIyLM4dffLmDFAQQFwzz2y4ImI\nSFtOWX5pa/hwYOdOYPx44OxZ4MEHnZ2AiEi/nF7qABAVBRQXyyv3M2eAJ54ADAYVSYiI9EXpQK+K\nCmDcOMBoBJYuBbz4KBQREQDbB3opn9JYUwNkZQE33QSsXg34+DgyDRGRe3DbKY3+/sCHHwKnT8ud\nMQ0NqhMREbkv5aUOANddB7z3HtC9u7yBeu6c6kRERO7JJUodADp3Bt58E4iOBtLTgcpK1YmIiNyP\n3WvqN9xwA/z8/NCpUyf4+Pjg008/bX+CDq4LCQH89a/A228DO3YAAwbYk46IyD3ZuqZu95ZGg8EA\nk8mEgIAAew/18/GAhQuB3r2BUaPkent4uCaHJiLSPU32qTtiA83cuUCvXnIppqAASErS/BRERLpj\n95q6wWDAmDFjEBsbi5deekmLTK1mzQJWrAAmTgR27dL00EREumT3mnplZSWCgoJQVVWF8ePHIz8/\nH6NHj7acwMZ1obZMJuD224GVK4GcHLsORUTkFpStqQcFBQEAAgMDMWXKFJSVlbUrdQDIy8tr/dlo\nNMJoNHboHEYjsH27fEippga48077MhMRuRqTyQSTyWT3cey6Uq+vrwcAXHfddbhw4QImTpyIRx55\nBJMmTbKcQIMrdbNDh+RYgblzgXnzNDkkEZFLUnKlfurUKeTk5MBgMKC+vh7Tp09vV+haCw8HSkrk\nyzaqq+UuGQ4CIyKyUD77xRZVVfLJ02HDgJdeAjp10vTwRETKue1AL1vV1gKTJgF9+wJvvCGfSCUi\n0gu3HehlKz8/efO0oQGYPBn4eXmfiMijuW2pA4Cvr3yRdVCQfOHG2bOqExERqeXWpQ4A3t7Aa6/J\n9XWjETh5UnUiIiJ13L7UAfnGpL//HZg6FUhJAX74QXUiIiI1lLyj1BEMBuDxx4GAACA1FSgslGN8\niYg8iW5K3ez+++UgsIwMYPNmYMQI1YmIiJxHF8svvzRjhlxnz86WM9mJiDyFLksdkJMd330XmDkT\n2LBBdRoiIufQ3fJLW+aXbEycKLc7zpmjOhERkWPputQBID4eKC6W+9jPnAHmz1ediIjIcdx2TEBH\nHT8uB4FlZgL5+RwERkSuzeNmv9iiulouxcTEyDcqcRAYEbkqj5v9YovevYGdO4GjR4Fp04CLF1Un\nIiLSlkeVOgB07w5s3Sp/zsoC6urU5iEi0pLHlToAdOkC/POfwMCB8iGl6mrViYiItOGRpQ7I9fRX\nXpFDwFJT5Y1UIiJ3p/stjVdjMMidMAEBlj3tgwapTkVEZDuPLnWz+fNlsaelAdu2yb3tRETuSJPl\nl+bmZiQkJCA7O1uLwykxZw7wwgtyL3tJieo0RES20aTUly1bhsjISBjc/ImeKVOAdeuA226z7JAh\nInIndpd6eXk5tm3bhtmzZ7vMQ0b2GDMGKCgA7r4bWL9edRoioo6xe0193rx5WLx4MWpra7XI4xJG\njJAPKY0fLweBPfCA6kRERNaxq9S3bNmCoKAgJCQkwGQy/eb38vLyWn82Go0wGo32nNYpoqPl2rp5\nENjjj3NeDBE5jslkumqPWsuu2S9/+ctfsHbtWnh7e6OxsRG1tbXIzc3FG2+8YTmBC81+sUVFBTBu\nHJCeLt+D6uWxO/uJyJmUD/QqKirCkiVLUFBQoEkwV1JTI0cK3HQTsHo14OOjOhER6Z1LDPRy990v\nv8XfXz6YdPo0kJsLNDSoTkRE9Os8avSuvS5dAmbNAk6eBN5/H/DzU52IiPTKJa7U9a5zZ+DNN4HI\nSLnGXlWlOhERUXss9Q7q1An4n/+RL9sYNQo4dkx1IiIiC85+sYHBACxcKF+6YR4EFh6uOhUREUvd\nLnPnAr16yaWYggIgKUl1IiLydCx1O82aJXfHTJwoX7yRnq46ERF5Mq6pa2DyZFno06YBmzerTkNE\nnoxX6hpJT5ez2LOz5cNKs2apTkREnoilrqGkJGDXLjlW4MwZYN481YmIyNOw1DUWHm4ZBFZdLXfJ\n6PRBWyJyQXyi1EEqK4EJE4Dhw4GXXuIgMCLqGOUDvX7zBB5a6gBQWwtMmgRcfz3w+uvyiVQiImtw\nTIAL8vMDtm8HLlwAcnKA+nrViYhI71jqDubrC2zcCPTpI9fZz55VnYiI9Iyl7gQ+PsCaNcDQoYDR\nKF+8QUTkCCx1J/HyApYuBaZMkfNijhxRnYiI9IhbGp3IYACeeAIICABSUoDCQvkuVCIirbDUFXjg\nATkILCNDjhUYMUJ1IiLSCy6/KPIf/wG8+qocK7Bjh+o0RKQXLHWFMjOBd98FZs4ENmxQnYaI9MCu\n5ZfGxkakpKSgqakJFy5cQGZmJpYuXapVNo9gfsnGxIlyu+OcOaoTEZE7s6vUu3btiuLiYvj6+qKp\nqQmjRo3Crl27kM6h4h0SHw8UFQFjx8pBYPPnq05ERO7K7hulvr6+AIBLly6hubkZwcHBdofyRIMG\nAaWlstirq4H8fA4CI6KOs3tNvaWlBfHx8QgODkZ6ejoiIyO1yOWR+vcHiovlVfucOUBzs+pERORu\n7L5S9/Lywueff45z585h3LhxMJlMMBqN7b6Tl5fX+rPRaLzi75NF797Azp1yVsy0acC6dUCXLqpT\nEZGjmUwmmEwmu4+j6ZTGhQsXwsfHB4899pjlBB48pdEeFy/KbY+1tXKHTPfuqhMRkTMpmdJYXV2N\n8+fPAwAaGhqwY8cOxMTE2HNI+lmXLvK9pwMHAqNHy3V2IqJrsavUT5w4gdTUVMTHxyMhIQGjR49G\nZmamVtk8nrc38MorQGqq/Bw/rjoREbk6viTDTeTnA8uXyz3tgwapTkNEjmZrd3L2i5uYP18OAktL\nA7Ztk3vbiYh+iaXuRubMAfz95V72TZvk06hERG1x9oubmToVePNN4NZb5RU7EVFbLHU3NHYs8P77\nwF13AevXq05DRK6Eyy9uKjlZPqQ0frwcBPbAA6oTEZErYKm7sehoOVbAPAjs8cc5L4bI03FLow5U\nVADjxgHp6cDf/y7fh0pE7s3W7mSp68TZs0BWFvC73wGrV8sHl4jIfSkZE0Cuo1cv+WBSZSWQmws0\nNKhOREQqsNR1pFs3+SJrX19gwgQ5DIyIPAtLXWc6d5bjeiMi5Bp7VZXqRETkTCx1HerUCXj5Zfne\n05QU4Ngx1YmIyFl4O02nDAZg4UI5LyYlBfjgAyA8XHUqInI0lrrOzZsnb6KmpwMFBUBSkupERORI\nLHUPcOedchDYhAnA22/LgicifeKauofIyZGFPm2a3CFDRPrEK3UPkp4uJztmZwM1NcCsWaoTEZHW\nWOoeJikJ+PhjOVbg7Flg7lzViYhISyx1DxQRAZSWAmPGyBdaP/UUB4ER6YVda+o//fQTUlNTERMT\ng8GDB+O5557TKhc52IABQEkJsHWrHNvb0qI6ERFpwa6BXqdOnUJVVRWio6NRV1eHxMREvPPOO4iL\ni7OcgAO9XNq5c8CkSUC/fsDrr8snUolIPSUDvYKDgxEdHQ0A6N69O2JjY3HixAl7DklO1rMnUFgI\nXLggd8jU16tORET20GxL49GjR1FWVoZRfBuy2/H1BTZuBPr0kS/cqKlRnYiIbKXJjdK6ujpMnToV\ny5YtQ48ePa74+3l5ea0/G41GGI1GLU5LGvLxAdaskU+gGo3y6r1vX9WpiDyHyWSCyWSy+zh2vyTj\n8uXLyMrKwvjx4zFv3rwrT8A1dbcihJwZs3atnM9+442qExF5JiVvPhJCYNasWejduzeWLl2qaTBS\n66WXgGeflVfsP982ISInUlLqpaWlSE1NRWxsLAw/b3R+5plnMH78eLuDkXrr18vlmM2bgREjVKch\n8ix8Ryk5xNatciDY+vXyYSUicg6+o5QcIjMT2LQJmDkT2LBBdRoiuhaOCaBrMr9kIzNTzouZM0d1\nIiL6LSx1skpCAlBUJJdgzpwB5s9XnYiIfg3X1KlDysvlhMesLLk7hoPAiByDN0rJaaqr5UutY2OB\n5cvli66JSFu8UUpO07s38NFHwJEjwPTpwMWLqhMRkRlLnWzSo4fc7tjSIt+kVFenOhERASx1skOX\nLsA//wmEhgKjR8tlGSJSi6VOdvH2BlatktseU1OB48dVJyLybNzSSHYzGIDFi+Xo3pQUOQjsd79T\nnYrIM7HUSTPz5wO9egFpacC2bUCbF2ARkZOw1ElTf/wj4O8vH1LatAngO1OInItr6qS522+X89hv\nvVVesROR87DUySHGjQPefx+46y7gf/9XdRoiz8HlF3KY5GRg505g/Hg5COz++1UnItI/ljo5VHQ0\nUFxsGQS2YAHnxRA5Eme/kFOcPCmXZDIygOefB7y48Ed0VRzoRS7v7Fk5k33QIGD1avngEhH9Og70\nIpfXqxewYwdQWQnk5gKNjaoTEemP3aV+9913Izg4GDExMVrkIZ3r1k2+yNrXF5gwAaitVZ2ISF/s\nLvW77roLhYWFWmQhD9G5M7BuHRAeDvz+90BVlepERPphd6mnpKSgV69eWmQhD9KpE/Dyy3K7Y0oK\ncOyY6kRE+sBbVaSMwQA8/TQQEGB5uXV4uOpURO7NKaWel5fX+rPRaITRaHTGaclNPPywvImang5s\n2QIMGaI6EZHzmUwmmEwmu4+jyZbGo0ePIjs7G19++eWVJ+CWRrLSu+8C994LvP02wP/uk6fjlkZy\ne7feCrz1lhwI9v77qtMQuSe7S33GjBkYOXIkvv32W4SGhuK1117TIhd5qN//Xr779I9/BN54Q3Ua\nIvfDJ0rJJX3zjRwr8PDDwNy5qtMQOZ+t3cndL+SSIiKAkhI5CKy6GnjqKQ4CI7IGr9TJpVVWyr3s\nycnAiy9yEBh5Dg70It06dw6YNAno3x94/XXAx0d1IiLH4+4X0q2ePYHCQuD8eWDyZKC+XnUiItfF\nUie34OsrX2TduzcwdixQU6M6EZFrYqmT2/DxkcsviYny4aSKCtWJiFwPS53cipcXsGwZcNttcl7M\nkSOqExG5Fm5pJLdjMAB//ascBJaaKtfbo6JUpyJyDSx1clsPPigHgWVkyBdvDB+uOhGRelx+Ibc2\ncyawahWQlSVflUfk6Vjq5PaysoCNG2XBb9igOg2RWlx+IV1ITZUv2cjMlNsdZ89WnYhIDZY66UZC\nAlBUJPexnzkD/OlPqhMROR/HBJDulJfLYs/OBp59loPAyD1x9gtRG6dPAxMnAnFxwPLl8kXXRO6E\ns1+I2ujTB9i5E/jhB2D6dODiRdWJiJyDpU661aOHfItSc7NciqmrU52IyPFY6qRrXbvKF1mHhgKj\nR8sbqER6xlIn3fP2lg8opaTIrY/Hj6tOROQ4dpd6YWEhYmJiEBkZifz8fC0yEWnOYACeew74z/+U\n5f7vf6tOROQYdu1+uXjxIsLDw1FaWorg4GAkJydj5cqVSEhIsJyAu1/IxaxYAfz3fwOLF8sRvv37\nq05EdCUlu18++eQTREVFoX///vD29sa0adOwdetWew5J5HD33gusXAm8847c8njTTcCsWXKJ5vBh\ngNcg5M7sKvXy8nKEhoa2/h4SEoLy8nK7QxE5WlYW8N578sXWW7YAI0cCJpN8aKlvXyA3F/jHP4C9\ne4GmJtVpiaxn15gAg5WP6uXl5bX+bDQaYTQa7TktkWa8vIDISPm59175144dA0pK5OeVV+QTqsnJ\nci0+JQUYNkzuqiHSkslkgslksvs4dq2pl5SUID8/H1u2bAEALF68GJcuXcKCBQssJ+CaOrm506eB\n0lJL0X/9NRAfbyn5W26RL8cm0pKSMQGNjY0IDw/H7t27ERQUhJEjR2LFihVITEy0OxiRq6qrA/71\nL0vJl5UBYWGWkk9JAa6/XnVKcnfKZr9s374djz76KFpaWnDHHXfgz3/+sybBiNzFpUvAvn2Wki8t\ntbxqz1zyYWEcLEYdw4FeRC6ipUUu0ZhLvrhYjipoeyUfE8MhY3R1LHUiFyUEcPSopeRLSoCKCrnj\nxlzyQ4cCXbqoTkquhKVO5EYqK9vffD10CEhMtJT8yJGAn5/qlKQSS53IjZ0/D+zZYyn5zz4DBg+2\nlPyoUUBwsOqU5EwsdSIduXhRFru55P/v/4CgoPbr8jfeyJuvesZSJ9Kx5mbg4MH26/IGQ/uSj46W\nD1ORPrDUiTyIEPKtTm1L/vTp9jdfk5KAzp1VJyVbsdSJPFxFheXma3Ex8N13cleNueSTk4Hu3VWn\nJGux1ImonXPn5Fq8+Up+/34gIqL9zdfAQNUp6bew1Inoqhob5UiDtjdf+/Vrvy4/cCBvvroKljoR\ndUhzM3DgQPt1eR8fS8Gnpsore958VYOlTkR2EUK+5s+8Jl9SAtTUyGUac9EnJsriJ8djqROR5k6c\naH8l/8MPcp68ueRHjAC6dVOdUp9Y6kTkcGfPtr/5+vnncn9825uvvXurTqkPLHUicrqGBuDTTy3L\nNf/6FxAaalmTT0mRv1PHsdSJSLmmJnn13nbJplu39jtswsO5w8YaLHUicjlCAIcPt58tX18vr+LN\nH86W/3UsdSJyC8eOyXI3f06dkmvx5pLnDhuJpU5EbunUKXkVX1QkS/7IEbmrxlzyw4YBXbuqTul8\nTi/1d955B3l5eTh06BDKysravWxai2BE5JnOnAF275YFX1QkXw2YmAikpcmS95QZNk4v9UOHDsHL\nywv33nsvnn/+eZY6ETmE+QUi5pLft09uozSX/C23AL16qU6pPVu709vWE4aHh9v6jxIRWa1HD2Ds\nWPkB2m+jXLYMmDEDCAuTBZ+WJnfYBAWpzaySzaVORKSCr68s77Q0+fulS/LqvbgYeO014J57gOuv\nt6zJp6UBISFqMzvTVUt9zJgxqKiouOKvL1q0CNnZ2Q4LRURkrc6d5Y3VESOAP/3JMqisuBjYtAmY\nO1de7bct+Ztu0u9e+auW+o4dOzQ5SV5eXuvPRqMRRqNRk+MSEf1Sp05AQoL8/Nd/yb3yhw7J9fiP\nPgKeeEJ+r+1e+chI9SVvMplgMpnsPo7dWxrT09OxZMkSDBky5NdPwBulRORChJDbJs1bKIuLgdpa\ny2iD1FQgLk79A1FO3/3y7rvv4qGHHsLp06fRs2dPJCQkYPv27ZoFIyJylvLy9nvlT5yQu2rMJT9k\niPPf98qHj4iINFJZKd/3at5G+e9/y4egzNsohw+XN2wdiaVOROQgNTWWB6KKi4EvvwTi4y0lP3Kk\nvBmrJZY6EZGT1NXJMcPmkv/sM/nqP3PJjxoFBATYdw6WOhGRIhcvWh6IKi6WT8DecEP7B6L69u3Y\nMVnqREQu4vJlYP9+S8mXlgKBge33yg8YcPVjsNSJiFxUSwtw8GD7bZS+vu33yg8a1H6vPEudiMhN\nCAF8+61ld01RkXxrVNuSj41lqRMRuSUhgB9/tFzFy22ULHUiIt2wtTu9HJCFiIgUYakTEekIS52I\nSEdY6kREOsJSJyLSEZY6EZGOsNSJiHSEpU5EpCMsdSIiHWGpExHpCEudiEhHbC71hx9+GJGRkYiM\njERWVhaqq6u1zEVERDawudSzs7Nx8OBBfP3114iOjsbTTz+tZS6HMplMqiNcwRUzAa6Zi5msw0zW\nc9VctrC51NPT0+HlJf/xW265BcePH9cslKO54v8BXTET4Jq5mMk6zGQ9V81lC03W1FeuXInJkydr\ncSgiIrKD99X+5pgxY1BRUXHFX1+0aBGys7MBAH/729/QuXNnzJw50zEJiYjIesIOa9asEcnJyaKh\noeE3vxMWFiYA8MMPP/zw04FPWFiYTb1s85uPCgsL8cgjj6CoqAh9+vSx5RBERKQxm0t90KBBuHTp\nEgICAgAAycnJePnllzUNR0REHePwd5QSEZHzaPZEaWFhIWJiYhAZGYn8/Pxf/c5DDz2EqKgoJCYm\nYv/+/Vqd2uZMhw4dQnJyMrp27Yrnn3/e4XmsybR27VrExsYiJiYGSUlJ2Lt3r/JMmzdvRmxsLOLi\n4hATE4PCwkLlmczKysrg7e2NTZs2OTyTNblMJhN69uyJhIQEJCQkOOX5DWv+XZlMJgwbNgzx8fFI\nS0tTnmnJkiWt/45iYmLg7e2NmpoapZkqKiqQkZGBqKgoDB48GCtWrHBoHmsyVVdXY8KECYiKisLw\n4cPx1VdfXfugNq3E/0JjY6O44YYbRHl5ubh8+bJISkoS+/bta/edDRs2iMmTJwshhNi3b5+Ii4vT\n4tR2ZaqsrBRlZWViwYIFYsmSJQ7NY22mTz75RNTW1gohhNi+fbuIj49Xnqmurq715wMHDogBAwYo\nzySEEE1NTSI9PV1kZmaKDRs2ODSTtbl27dolsrOzHZ6lI5lOnjwpoqKixKlTp4QQQlRXVyvP1FZB\nQYHIyMhQnmnBggXiscceE0IIUVVVJfz9/UVjY6PSTA8++KB46qmnhBBCHDp0SCQnJ1/zuJpcqX/y\nySeIiopC//794e3tjWnTpmHr1q3tvrNt2zbccccdAICEhAQ0NTWhvLxci9PbnCkwMBBJSUnw8fFx\nWI6OZho2bBh69OgBwDkPdVmTqVu3bq0/19XV4frrr1eeCQBefPFFTJkyBYGBgQ7N09FcwokrmtZk\neuuttzBt2jQEBQUBQOt9MJWZ2lq/fj1mzJihPFNoaChqa2sBALW1tQgMDESXLl2UZjp8+DDS09MB\nAIMHD0ZlZSVOnjx51eNqUurl5eUIDQ1t/T0kJOSKwrbmO1py9vms0dFMK1ascPhDXdZmeu+99xAR\nEYEJEybghRdeUJ7p+PHj2Lx5M+677z4AgMFgcGgma3MZDAbs2bMHMTExyMjIwBdffKE80+HDh3Hi\nxAkkJycjNjYWq1atUp7JrL6+Hh988AFyc3OVZ5ozZw6++uor9OvXD3FxcVi2bJnyTDExMa1Li59+\n+il+/PFHHDt27KrHverDR9ay9g/UL69gHPkH0Rl/yDuqI5lMJhNeffVV7N6924GJrM+Uk5ODnJwc\nlJSU4I477sDhw4eVZpo7dy6effZZGAwGCCGccnVsTa4hQ4agvLwcXbt2xYcffoicnBwcOXJEaabm\n5mYcPHgQH3/8Merr6zFixAgkJycjKipKWSazgoICjBo1Cv7+/g7JYmZNpkWLFiE+Ph4mkwnff/89\nxowZgy+++KL1fzmryPTkk0/ivvvuQ1RUFCIiIpCUlHTNf06TUg8JCcFPP/3U+vtPP/3U7r9Abb8z\nfPhwAPK/UiEhIVqc3uZMzmZtpgMHDmD27NkoLCxEr169XCKTWUpKCpqamnDq1CkEBwcry7R3715M\nnz4dAHD69Gls374dPj4+mDRpkkMyWZure/furT+PHTsWnTt3RkVFBfr27ass04ABA9CvXz/4+vrC\n19cXaWlpOHDggMNKvSP/P/XWW285fOnF2kylpaV44oknAABhYWG48cYb8c0332DYsGHKMvn5+WHd\nunWtv4eFheHmm2+++oG1WPBvaGgQAwcOFOXl5eLSpUsiKSlJ7N27t913NmzYIHJycoQQQuzdu1fE\nxsZqcWq7Mpk9+eSTTrlRak2mH3/8UYSFhYk9e/Y4PI+1mY4cOdL68969e0VISIhoaWlRmqmtO++8\nU2zcuNFheTqSq6qqqvXnzz77TPTv3180NzcrzbRv3z6RkZEhmpqaxIULF0RkZKTYv3+/0kxCCFFT\nUyMCAgJEfX29w7J0JNP9998v8vLyhBBCVFRUiL59+7beXFaV6dy5c+Ly5ctCCCHWrl0rpkyZcs3j\nalLqQgixbds2ERUVJSIiIsSiRYuEEEIsX75cLF++vPU7DzzwgIiMjBQJCQlX/UPqrEwnT54UISEh\nws/PT/j7+4vQ0FBx/vx5pZnuueceERAQIOLj40V8fLwYOnSoQ/NYk+mZZ54R0dHRIjo6WgwdOlSU\nlpYqz9SWs0rdmlwvvPBC67+rxMREUVRUpDyTEEIsXrxYREZGikGDBon8/HyXyLRmzRoxY8YMh2ex\nNlNFRYUYPXq0iIiIEDfffLNYtWqV8ky7d+8WN998s4iNjRW5ubmipqbmmsfkw0dERDrC19kREekI\nS52ISEdY6kREOsJSJyLSEZY6EZGOsNSJiHSEpU5EpCMsdSIiHfl/2hihodD/xAQAAAAASUVORK5C\nYII=\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The given math.experimental data do not satisfy the Redlich-Kistern criterion\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "x1 = [0.0331, 0.9652]; \t\t\t#composition of chloroform\n", "P = [40.84 ,84.88]; \t\t\t#total pressure for system (kPa)\n", "P1 = 82.35; \t\t\t#vapour pressure of chloroform at 328 K (kPa)\n", "P2 = 37.30; \t\t\t#vapour pressure of acetone at 328 K (kPa) \n", "\n", "\n", "# Calculations\n", "#To estimate the constants in Margules equation\n", "#Using eq. 8.103 and 8.104 (Page no. 375)\n", "g1_inf = (P[0]-(1-x1[0])*P2)/(x1[0]*P1)\n", "g2_inf = (P[1]-(x1[1]*P1))/((1-x1[1])*P2)\n", "\n", "import math\n", "A = math.log(g1_inf)\n", "B = math.log(g2_inf)\n", "\n", "# Results\n", "print 'Margules constants are:'\n", "print ' A = %f'%A\n", "print ' B = %f'%B\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Margules constants are:\n", " A = 0.560560\n", " B = 1.424762\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "x1 = [0., 0.033, 0.117, 0.318, 0.554, 0.736, 1.000]; \t\t\t#liquid composition of acetone\n", "pp1 = [0.,25.33, 59.05, 78.37, 89.58,94.77, 114.63]; \t\t\t#partial pressure of acetone (kPa)\n", "Pw = 19.91; \t\t\t#vapour pressure of water at 333 K (kPa)\n", "k = [0,0,0,0,0,0,0]\n", "\n", "# Calculations\n", "for i in range(1,6):\n", " k[i] = x1[i]/((1.-x1[i])*pp1[i])\n", "\n", "k[6] = 0.1; \t\t\t#k(7) should tend to infinity\n", "from matplotlib.pyplot import *\n", "plot(pp1,k)\n", "show()\n", "\t\t\t#From graph% area gives the integration and hence partiaal pressure of water is calculated\n", "pp2 = [19.91, 19.31, 18.27, 16.99, 15.42, 13.90, 0];\n", "\n", "# Results\n", "print \"The results are:\"\n", "print ' Acetone composition Partial pressure of water'\n", "for i in range(7):\n", " print ' %f %f'%(x1[i],pp2[i])\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH5pJREFUeJzt3X9UlPWeB/A3vwK7WvkLyhn8Eagww2AzCxqu604/DPHH\n5gpK6h07ZC3XW+vJ3La7f+xR15Mt/jjKpnHxptxbUEZ5K28Qx2M6lZZEC6TYdVUUncEof6aE0MB8\n948n5oLCzMDM8MzM836dMwdm5vvMfL51ztsPz/N9nidECCFARESKESp3AURENLAY/ERECsPgJyJS\nGAY/EZHCMPiJiBSGwU9EpDBuBX9FRQV0Oh00Gg3y8vJue//EiRNIS0tDVFQUNm/e7HjdYrFg+vTp\n0Ol0mDhxIjZs2OC9yomIqF9CXK3jb2trQ0JCAg4dOoSYmBikpaVhx44d0Ov1jjEXL17EuXPn8MEH\nH2Do0KFYtWoVAOD777/HxYsXkZSUhObmZhgMBrz77ruYNGmSb2dFRES9ctnxV1ZWQqvVQqVSITw8\nHNnZ2SgrK+s2ZuTIkUhJSUFERES312NiYpCUlAQAGDx4MJKTk3HhwgUvlk9ERH3lMvitVitiY2Md\nz9VqNaxWa5+/qKGhAVVVVZg2bVqftyUiIu9xGfwhISEef0lzczMWLFiA/Px8DBkyxOPPIyKi/gt3\nNUCtVsNisTieWyyWbn8BuGKz2ZCZmYnFixdj3rx5t70fHx+P+vp6tz+PiIiAuLg4nD59ul/buuz4\nU1NTUVdXh8bGRthsNpSWliIjI6PHsbceJxZCYNmyZdBoNFi5cmWP29TX10MIEbSP1atXy14D58f5\nKXF+wTw3IYRHDbPLjj8qKgoFBQVIT0+H3W6HyWSCwWBAYWEhACA3NxdNTU1ITU3F9evXERoaivz8\nfHz77beora1FcXExkpOTHauAXnnlFcycObPfBRMRkWdcBj8AZGRk3Nbl5+bmOn6/9957u+0O6jRt\n2jTY7XYPSyQiIm/imbs+ZjQa5S7Bpzi/wBbM8wvmuXnK5QlcPi8gJAQyl0BEFHA8yU52/ERECsPg\nJyJSGAY/EZHCMPiJiBSGwU9EpDAMfiIihWHwExEpDIOfiEhhGPxERArD4CciUhgGPxGRwjD4iYgU\nhsFPRKQwDH4iIoVh8BMRKQyDn4hIYRj8REQKw+AnIlIYBj8RkcIw+ImIFIbBT0SkMAx+IiKFYfAT\nESkMg5+ISGEY/ERECsPgJyJSGJfBX1FRAZ1OB41Gg7y8vNveP3HiBNLS0hAVFYXNmzf3aVsiIhp4\nIUII0dubbW1tSEhIwKFDhxATE4O0tDTs2LEDer3eMebixYs4d+4cPvjgAwwdOhSrVq1ye1sACAkJ\ngZMSiIioB55kp9OOv7KyElqtFiqVCuHh4cjOzkZZWVm3MSNHjkRKSgoiIiL6vC0REQ08p8FvtVoR\nGxvreK5Wq2G1Wt36YE+2JSIi33Ea/CEhIf3+YE+2JSIKdp98AmzYIM93hzt7U61Ww2KxOJ5bLJZu\nXby3tl2zZo3jd6PRCKPR6NZ3EBEFqq1bgXnz3B9vNpthNpu98t1OD+62trYiISEBhw8fRnR0NKZO\nnYrCwkIYDIbbxq5ZswZDhgxxHNx1d1se3CUipTlzBpg8GTh/Hrjzzv59hifZ6bTjj4qKQkFBAdLT\n02G322EymWAwGFBYWAgAyM3NRVNTE1JTU3H9+nWEhoYiPz8f3377LQYPHtzjtkRESldQAOTk9D/0\nPeW04x+QAtjxE5GCtLQAo0cDX30F3H9//z/HZ8s5iYjIu95+G0hL8yz0PcXgJyIaIEIA27YBzz0n\nbx0MfiKiAfLFF8BPPwEzZshbB4OfiGiAbNsGPPssECpz8vLgLhHRAPjuO0CjAc6eBe65x/PP48Fd\nIiI/t2MH8MQT3gl9T7HjJyLysZ9/BsaOBfbtA5KSvPOZ7PiJiPzY++8DEyd6L/Q9xeAnIvKxV1+V\nfwlnVwx+IiIfqqkBzp0DHn9c7kr+hsFPRORD27cDv/kNEO70ymgDiwd3iYh85MoV6dIMJ08C0dHe\n/Wwe3CUi8kO7dgFz53o/9D3Fjp+IyAc6OoDx44Hdu6Vr73sbO34iIj/z8cfAiBG+CX1PMfiJiHzA\nH67C2Rvu6iEi8rKTJ4Fp06RbK0ZF+eY7uKuHiMiPvPYa8PTTvgt9T7HjJyLyouZmYMwY6cSt0aN9\n9z3s+ImI/ERxMfCP/+jb0PcUg5+IyEv85daKrjD4iYi85NNPAbsdeOghuStxjsFPROQlnd1+SIjc\nlTjHg7tERF5gsQCTJklX4hwyxPffx4O7REQyKywEfv3rgQl9T7HjJyLyUFubtIrn00+BhISB+U52\n/EREMnr3XWk3z0CFvqcY/EREHgqEJZxdMfiJiDxQVQU0NQGzZ8tdiftcBn9FRQV0Oh00Gg3y8vJ6\nHLNixQpotVoYDAbU1NQ4Xl+9ejUmTJiAhIQEZGVloaWlxXuVExH5gW3bgN/+FggLk7sS9zkN/ra2\nNixfvhwVFRU4evQo3nvvvW7BDgB79uzB+fPncfz4cezcuRM5OTkAgNOnT+PNN99EXV0dTpw4gbCw\nMLz99tu+mwkR0QC7eBH48ENg2TK5K+kbp8FfWVkJrVYLlUqF8PBwZGdno6ysrNuY8vJymEwmAIBe\nr0d7ezsaGxsxbNgwRERE4KeffkJ7eztaWlowZswY382EiGiAvf46MH8+MHy43JX0jdPgt1qtiI2N\ndTxXq9WwWq1ujRk2bBhWrVqF0aNHY9SoUbjnnnvw6KOPerl8IiJ5tLcDBQWBdVC3U7izN0PcPO+4\np7Wk9fX12Lp1KxoaGnD33XdjwYIFKCkpwZIlS24bu2bNGsfvRqMRRqPRre8lIpLLX/4CqNWAwTAw\n32c2m2E2m73yWU6DX61Ww2KxOJ5bLJZu3X3XMVOmTAEg/QWgVqvx2WefYerUqRj+y99A8+fPx6FD\nh1wGPxFRINi2DfjXfx2477u1KV67dm2/P8vprp7U1FTU1dWhsbERNpsNpaWlyMjI6DZm1qxZKCkp\nAQBUV1cjLCwMKpUKcXFxOHLkCG7evAkhBPbv34/4+Ph+F0pE5C++/VZ6ZGbKXUn/OO34o6KiUFBQ\ngPT0dNjtdphMJhgMBhQWFgIAcnNzkZmZiYMHD0Kr1SIyMhJFRUUAgMmTJyMrKwvJyckIDQ2FXq/H\ns88+6/sZERH52PbtwL/8C3DHHXJX0j+8Vg8RUR/8+CMwbhxQVweMGiVfHbxWDxHRAHnjDWDGDHlD\n31NOd/UQEdHf2O3SQd3XX5e7Es+w4ycictMnnwBRUcC0aXJX4hkGPxGRmwLl1oqu8OAuEZEbGhqA\nlBTp1oq/+pXc1fDgLhGRzxUUAE8+6R+h7yl2/ERELty8Kd1a8csvAX85D5UdPxGRD+3eDUye7D+h\n7ykGPxGRE0IAr74amFfh7A2Dn4jIiSNHgOvXgfR0uSvxHgY/EZET27YBzz4LhAZRWvLgLhFRL5qa\ngMRE4MwZYOhQuavpjgd3iYh84A9/ABYu9L/Q9xQ7fiKiHthswNixwMcfA8nJcldzO3b8RERe9v77\n0vJNfwx9TzH4iYh60HldnmDE4CciusU33wD19cC8eXJX4hsMfiKiW2zfDvzmN0BEhNyV+AYP7hIR\ndXH1KnD//cCJE0BMjNzV9I4Hd4mIvKSoCJg9279D31Ps+ImIfmG3A+PHAyUlwIMPyl2Nc+z4iYi8\noKJCOllryhS5K/EtBj8R0S+C5daKrnBXDxERgNOngalTpVsrDhokdzWucVcPEZGHXnsNeOqpwAh9\nT7HjJyLF++kn6daK//u/0vV5AgE7fiIiD5SUAP/wD4ET+p5i8BORogkR3Nfl6YnL4K+oqIBOp4NG\no0FeXl6PY1asWAGtVguDwYCamhrH69euXcOCBQswadIkJCYm4ssvv/Re5UREXvD558DPPwOPPCJ3\nJQMn3NmbbW1tWL58OQ4dOoSYmBikpaXhscceg16vd4zZs2cPzp8/j+PHj6OmpgY5OTmora0FADzz\nzDOYP38+Fi1aBLvdjubmZt/Ohoioj5SyhLMrpx1/ZWUltFotVCoVwsPDkZ2djbKysm5jysvLYTKZ\nAAB6vR7t7e1obGzE5cuXUVtbi0WLFklfFBqKu+66y0fTICLqu8ZGYP9+YOlSuSsZWE6D32q1IjY2\n1vFcrVbDarW6HGOxWHDq1CmMHDkSCxcuRFJSEpYuXcqOn4j8SmEhsHgxoLSe1OmunhA3//a5dUlR\nSEgIOjo6UFVVhfz8fKSmpuL555/HunXrejxOsGbNGsfvRqMRRqPRre8lIuqvtjZgxw7g4EG5K3GP\n2WyG2Wz2ymc5Df7O7r2TxWLp1t13HTPll4tbWK1WqNVq2O12qFQqpKamAgCysrKwbt26Hr+na/AT\nEQ2EPXuApCQgMVHuStxza1O8du3afn+W0109qampqKurQ2NjI2w2G0pLS5GRkdFtzKxZs1BSUgIA\nqK6uRlhYGFQqFWJjYzFixAicPHkSALB//34kBsp/YSIKeq++qqwlnF057fijoqJQUFCA9PR02O12\nmEwmGAwGFBYWAgByc3ORmZmJgwcPQqvVIjIyEkVFRY7td+7ciSVLlqClpQVjxoxx/ANBRCSnr78G\nLlwA5syRuxJ58JINRKQ4OTnAxInA734ndyX950l2MviJSFEuXQLi44FTp4CRI+Wupv94rR4iIjft\n3AnMmxfYoe8pdvxEpBgdHdKN1P/8Z+Dv/k7uajzDjp+IyA0ffQSMGhX4oe8pBj8RKYbSrsLZG+7q\nISJF+OtfgYcekm6tGBkpdzWe464eIiIXXnsNeOaZ4Ah9T7HjJ6Kgd/26dHeto0cBtVruaryDHT8R\nkRNvvindaCVYQt9TTi/ZQEQU6Dpvrfj738tdif9gx09EQe3AASA8HJg+Xe5K/AeDn4iCmhJvregK\nD+4SUdA6dw4wGKSfgwfLXY138eAuEVEPfv976X66wRb6nmLHT0RBqbUVGD0aOHwYGD9e7mq8jx0/\nEdEt3nlHuiZPMIa+pxj8RBR0hFD2rRVdYfATUdD56ivg6lVg5ky5K/FPDH4iCjrbtgG//S0QFiZ3\nJf6JB3eJKKh8/z2QkADU1wPDhsldje/w4C4R0S/+8AcgKyu4Q99T7PiJKGjYbMC4cdKdth54QO5q\nfIsdPxERgA8/lII/2EPfUwx+IgoavLWie7irh4iCwrFj0vLNhgYgIkLuanyPu3qISPG2bwdyc5UR\n+p5ix09EAe/aNWnf/l//Ctx7r9zVDAx2/ESkaH/8I5CRoZzQ95TL4K+oqIBOp4NGo0FeXl6PY1as\nWAGtVguDwYCamppu73V0dECv12Pu3LneqZiIqAu7XdrNw4O67nMa/G1tbVi+fDkqKipw9OhRvPfe\ne7cF+549e3D+/HkcP34cO3fuRE5OTrf38/PzodFoEMLb3xCRD+zbBwwZAqSlyV1J4HAa/JWVldBq\ntVCpVAgPD0d2djbKysq6jSkvL4fJZAIA6PV6tLe3w2q1AgCsVivKy8vx9NNPcz8+EfkEb63Yd06D\n32q1IjY21vFcrVY7Qt3ZmMbGRgDAypUrsXHjRoSG8lACEXlffT1QWQksWiR3JYEl3Nmb7u6eubWb\nF0Lgo48+QnR0NPR6Pcxms9Pt16xZ4/jdaDTCaDS69b1EpGwFBUBODjBokNyV+J7ZbHaZpe5yGvxq\ntRoWi8Xx3GKxdOvuu46ZMmUKAOkvALVajb1792Lv3r0oLy9Ha2srrl+/jqVLl+KNN9647Xu6Bj8R\nkTtaWqTVPFVVclcyMG5titeuXdvvz3K6DyY1NRV1dXVobGyEzWZDaWkpMjIyuo2ZNWsWSkpKAADV\n1dUICwuDWq3G+vXrYbFYcPbsWezevRsPP/xwj6FPRNQfb70FTJ0qrd+nvnHa8UdFRaGgoADp6emw\n2+0wmUwwGAwoLCwEAOTm5iIzMxMHDx6EVqtFZGQkioqKevwsruohIm8RQjqou2GD3JUEJp65S0QB\n59AhYNky6Uxdpa4d4Zm7RKQo27YBzz6r3ND3FDt+IgooFy4AWq10Fc6775a7Gvmw4ycixdixQ1q3\nr+TQ9xQ7fiIKGD//DIwZA+zfL3X9SsaOn4gUYc8eIDGRoe8pBj8RBQzeWtE7GPxEFBCqq4Hz54F/\n+ie5Kwl8DH4iCgjbtwPLlwPhTk87JXfw4C4R+b3Ll4H4eODkSWDkSLmr8Q88uEtEQW3XLmkXD0Pf\nO9jxE5Ff6+iQuv3SUiA1Ve5q/Ac7fiIKWuXlQHQ0Q9+bGPxE5Ne4hNP7uKuHiPzW//0fMH06cO4c\nEBUldzX+hbt6iCgovfYa8PTTDH1vY8dPRH7phx+AhATg6FFArZa7Gv/Djp+Igs6mTdJVOBn63seO\nn4j8Tme3/803QGys3NX4J3b8RBRUOrt9hr5vsOMnIr/CffvuYcdPREFj0yZg8WKGvi+x4yciv8Fu\n333s+IkoKGzcyG5/ILDjJyK/wG6/b9jxE1HA27gRWLKEoT8Q2PETkew6u/1jxwCVSu5qAgM7fiIK\naJ3dPkN/YLDjJyJZff89kJjIbr+vfN7xV1RUQKfTQaPRIC8vr8cxK1asgFarhcFgQE1NDQDAYrFg\n+vTp0Ol0mDhxIjZs2NCvIokoeLHbl4FwobW1VYwdO1ZYrVZhs9lESkqKqK6u7jbmvffeE48//rgQ\nQojq6moxadIkIYQQTU1N4tixY0IIIW7cuCHGjx8vamtru23rRglEFKSamoQYOlQIq1XuSgKPJ9np\nsuOvrKyEVquFSqVCeHg4srOzUVZW1m1MeXk5TCYTAECv16O9vR1WqxUxMTFISkoCAAwePBjJycm4\ncOGC1//xIqLAtHEj8Otfs9sfaC6D32q1IrbLlZLUajWsVmufxzQ0NKCqqgrTpk3ztGYiCgLffw/s\n2gW89JLclSiPy+APCQlx64PELQcZum7X3NyMBQsWID8/H0OGDOljiUQUjNjtyyfc1QC1Wg2LxeJ4\nbrFYunX3XcdMmTIFgPQXgPqXszBsNhsyMzOxePFizJs3r8fvWLNmjeN3o9EIo9HY13kQUQDp7PaP\nHZO7ksBhNpthNpu98lkul3O2trYiISEBhw8fRnR0NKZOnYrCwkIYDAbHmD179qC4uBjvv/8+qqur\nkZOTg2+++QZCCDz55JMYPnw4tmzZ0nMBXM5JpDirVgE2G/A//yN3JYHLk+x02fFHRUWhoKAA6enp\nsNvtMJlMMBgMKCwsBADk5uYiMzMTBw8ehFarRWRkJIqKigAAhw8fRnFxMZKTk6HX6wEAr7zyCmbO\nnNmvYoko8DU1AUVFQF2d3JUoF0/gIqIBtWoV0N4O5OfLXUlg8yQ7GfxENGCamgCNRur2R42Su5rA\nxmv1EFFA2LgRMJkY+nJjx09EA4LdvndxVw8R+b0XXgA6Orhv31sY/ETk19jtex+Dn4j82gsvAHY7\nsHWr3JUED5+u4yci8kRVFfDHPwLHj8tdCXXiqh4i8johgIMHgfR04J//WTpD97775K6KOrHjJyKv\nsduBvXuB//5v4OpV6cqbS5YAkZFyV0ZdMfiJyGM2G/DWW0BeHnDnncDvfid1+mFhcldGPWHwE1G/\ntbQAr78ObN4MxMdLSzUffRRw82ruJBMGPxH12dWrwPbtwKuvAn//90BpKfDLVdkpAPDgLhG57cIF\n4N/+DYiLA+rrAbMZ+POfGfqBhsFPRC6dOgU88wyg1Ur782trpUsrJybKXRn1B4OfiHpVUwNkZwNT\np0rLMU+dkvbjjx4td2XkCQY/EXUjhLQLZ+ZMYM4cYPJk4MwZ4L/+CxgxQu7qyBt4cJeIAEhr8P/y\nF2kN/uXLwL//O/Dhh1yDH4wY/EQKZ7MBb78trcGPjAT+4z+A+fO5Bj+YMfiJFKqlBdi1C9i0Cbj/\nfmDLFmDGDK7BVwIGP5HCdF2Dn5YG7N4NPPig3FXRQOLBXSKFuHABePFFaQ3+qVPSRdQ++IChr0Ts\n+ImCiBDAlSvA2bPSo6FB+nnmDFBZKd3vtqYGGDNG7kpJTrwRC1GAuXHjb8HeNdw7fw8NBcaNA8aO\nlX52Ph58kMsxgwnvwEUURG7eBM6d6znYz54FWlv/Fuq3hvvYscDQofLWTwODwU8UQGw2wGLpvWu/\nckU6M7ZrmHf9PTqaK2+IwU/kVzo6gO++6z3Yv/tOuvxBT8E+bpz0HtfQkysMfqIBJATwww+374Lp\nfG6xSLtbbt0F0/l7bCwQESHzJCjgMfiJvOzq1d6DvaEBGDSo5/3r48ZJK2YGDZK1fFIAnwZ/RUUF\nXnzxRXR0dODJJ5/ESy+9dNuYFStW4JNPPkFkZCR27twJvV7v9rYM/uAhhLSbw2aTHu3tffvpL9tc\nuSJdt6an/eudP++6S+b/2KR4nmSn03X8bW1tWL58OQ4dOoSYmBikpaXhsccecwQ7AOzZswfnz5/H\n8ePHUVNTg5ycHNTW1rq1rRKYzWYYjUanY9rbpZUcnY+WFunnzz/7f2C2tpohhBHt7dJrYWFAeLi0\nK6O3n87e6+vYyEjgV7/q/+f3tM3ddwPDhkkHUN35/xfIgnl+wTw3TzkN/srKSmi1WqhUKgBAdnY2\nysrKuoV3eXk5TCYTAECv16O9vR1WqxVnzpxxua0/EkIKtK5B3NOjM5xdPWprzRg92uh0vN0u7Rq4\n9REZ6XmQ3Xmn90K2p5+bNpnxn/9pRESEFPqhQXYueLCHRzDPL5jn5imnwW+1WhEbG+t4rlarYTab\nXY6xWq1obGx0ua07hJA6374Gbl/Hdh0fGtpzEN/6uPPO218bNqz785AQ4Kmneh8/aJAUoIG6PC8y\nUpoXEQUOp8Ef4mYaebqP/qGHeg/j1lapk+wtNJ2F8pAh0prnvoZ4uBcvZHHiBPDYY977PCIiTzmN\nOLVaDYvF4nhusVi6dfFdx0z55W7LnX8B2Gw2l9sCQFxcHMxm5//A2O3Ajz9Kj0C0du1auUvwKc4v\nsAXz/IJ5bnFxcf3e1mnwp6amoq6uDo2NjYiOjkZpaSkKCwu7jZk1axaKi4uRlZWF6upqhIWFQaVS\nYfjw4S63BYDTp0/3u3giIuo7p8EfFRWFgoICpKenw263w2QywWAwOAI8NzcXmZmZOHjwILRaLSIj\nI1FUVOR0WyIikpfsJ3AREdHAknXxXUVFBXQ6HTQaDfLy8uQsxWMWiwXTp0+HTqfDxIkTsWHDBgDA\nlStXMGPGDCQnJyM9PR3Xrl2TuVLPdHR0QK/XY+7cuQCCa37Xrl3DggULMGnSJCQmJuLIkSNBNb/V\nq1djwoQJSEhIQFZWFlpaWgJ6fk899RRiYmKg0+kcrzmbzyuvvAKNRgOdTod9+/bJUbLbeprbCy+8\nAI1GA41Ggzlz5uDy5cuO9/o8NyGT1tZWMXbsWGG1WoXNZhMpKSmiurparnI81tTUJI4dOyaEEOLG\njRti/Pjxora2Vjz33HNiy5YtQgghtmzZIlasWCFnmR7bvHmzWLx4sZg7d64QQgTV/LKyssRbb70l\nhBCio6ND/Pjjj0Ezv1OnTolx48aJtrY2IYQQCxcuFK+//npAz++zzz4T1dXVIikpyfFab/P5+uuv\nRUpKimhvbxdWq1WMHTvW8d/CH/U0twMHDoiOjg4hhBAvvfSSeP7554UQ/ZubbMH/6aefitmzZzue\nb9y4Uaxbt06ucrwuMzNTlJWVifvvv19cunRJCCHExYsXRVxcnMyV9Z/FYhGPPPKIOHDggJgzZ44Q\nQgTN/C5duiTi4+Nvez1Y5nf58mUxYcIEceXKFWGz2cScOXPEvn37An5+Z8+e7RaOvc1n7dq1YtOm\nTY5xs2fPFp9//vnAFttHt86tq71794oFCxYIIfo3N9l29fR24lcwaGhoQFVVFaZNm4aLFy9i+PDh\nAIARI0bghx9+kLm6/lu5ciU2btyI0C6n5wbL/E6dOoWRI0di4cKFSEpKwtKlS3Hjxo2gmd+wYcOw\natUqjB49GqNGjcI999yDGTNmBM38OvU2n8bGRqjVase4QM+bHTt24PHHHwfQv7nJFvzunhwWaJqb\nm5GVlYX8/HzcFURX8vroo48QHR0NvV4flBfVs9vtqKqqwosvvoi6ujoMGzYM69atk7ssr6mvr8fW\nrVvR0NCACxcuoLm5GcXFxXKXRf3w8ssv44477sCSJUv6/RmyBb87J4cFGpvNhszMTCxZsgTz5s0D\nAIwcORKXLl0CIHUj0dHRcpbYb1988QX27t2LcePGYdGiRThw4ABMJlPQzC82NhYqlQqpqakAgKys\nLNTW1iI6Ojoo5vfVV19h6tSpGD58OMLDwzF//nwcPnw4aP7/deptPrfmza17HALFn/70J5SVlaGk\npMTxWn/mJlvwdz05zGazobS0FBkZGXKV4zEhBJYtWwaNRoOVK1c6Xu88wQ0AiouLMWvWLLlK9Mj6\n9ethsVhw9uxZ7N69Gw8//DDefPPNoJlfbGwsRowYgZMnTwIA9u/fj8TERGRkZATF/OLj43HkyBHc\nvHkTQgjs378fcXFxQfP/r1Nv85k1axbeeecdx0Uk6+rqMHnyZDlL7bOKigps2LABe/fuRVRUlOP1\nfs3NS8ch+qW8vFxotVqRmJgo1q9fL2cpHvv8889FSEiImDRpknjggQfEAw88ID7++GNx+fJl8eij\njwqdTidmzJghrl69KnepHjObzY5VPcE0v9raWpGSkiI0Go3IyMgQV65cCar5rV69WsTHx4sJEyaI\n7OxscfPmzYCe3xNPPCHuu+8+ERERIdRqtdi1a5fT+bz88ssiMTFRaLVaUVFRIWPlrt06t507d4r4\n+HgxevRoR74sX77cMb6vc+MJXEREChNkV08nIiJXGPxERArD4CciUhgGPxGRwjD4iYgUhsFPRKQw\nDH4iIoVh8BMRKcz/Axc5FnWtf/T6AAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The results are:\n", " Acetone composition Partial pressure of water\n", " 0.000000 19.910000\n", " 0.033000 19.310000\n", " 0.117000 18.270000\n", " 0.318000 16.990000\n", " 0.554000 15.420000\n", " 0.736000 13.900000\n", " 1.000000 0.000000\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.27 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P = 93.30; \t\t\t#total pressure in kPa\n", "T1 = 353.; \t\t\t#(K)\n", "T2 = 373.; \t\t\t#(K)\n", "Pa1 = 47.98; \t\t\t#Vapour pressure of water at 353 K (kPa)\n", "Pb1 = 2.67; \t\t\t#Vapour pressure of liquid at 353 K (kPa)\n", "Pa2 = 101.3; \t\t\t#Vapour pressure of water at 373 K (kPa)\n", "Pb2 = 5.33; \t\t\t#Vapour pressure of liquid at 373 K (kPa)\n", "\n", "# Calculations and Results\n", "#To calculate under three phase equilibrium:\n", "#(a). The equilibrium temperature\n", "P1 = Pa1+Pb1; \t\t\t#sum of vapour pressures at 353 K\n", "P2 = Pa2+Pb2; \t\t\t#at 373 K\n", "\n", "#Since vapour pressure vary linearly with temperature% so T at which P = 93.30 kPa\n", "T = T1 + ((T2-T1)/(P2-P1))*(P-P1)\n", "print '(a). The equilibrium temperature is %f K'%T\n", "\n", "#(b). The composition of resulting vapour\n", "#At equilibrium temp:\n", "Pa = 88.5; \t\t\t#vapour pressure of water (kPa)\n", "Pb = 4.80; \t\t\t#vapour pressure of liquid (kPa)\n", "\n", "#At 3-phase equilibrium% ratio of mol fractions of components is same as the ratio of vapour pressures\n", "P = Pa+Pb; \t\t\t#sum of vapour pressures\n", "y = Pa/P; \t\t\t#mole fraction of water\n", "print ' The vapour contains %f mol percent water vapour'%(y*100)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a). The equilibrium temperature is 368.237585 K\n", " The vapour contains 94.855305 mol percent water vapour\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = [323 ,333, 343, 348, 353, 363, 373]; \t\t\t#temperatures (K)\n", "P2 = [12.40 ,19.86, 31.06, 37.99, 47.32, 70.11, 101.3]; \t\t\t#vapour pressure for benzene (kPa)\n", "P1 = [35.85 ,51.85, 72.91, 85.31, 100.50, 135.42, 179.14]; \t\t\t#vapour pressure for water (kPa)\n", "Tb = 353.1; \t\t\t#boiling temperature (K)\n", "Pb = 101.3; \t\t\t#boiling pressure (kPa)\n", "\n", "\n", "# Calculations and Results\n", "#To prepare temperature composition diagram\n", "#To find three phase temperature\n", "P = [0,0,0,0,0,0,0]\n", "for i in range(7):\n", " P[i] = P1[i] + P2[i];\n", "from matplotlib.pyplot import *\n", "plot(P,T)\n", "\t\t\t#From graph, at P = 101.3 kPa..\n", "T_ = 340.; \t\t\t#three phase temperature\n", "\n", "\t\t\t#At three phase temperature\n", "P1_ = 71.18; \t\t\t#(kPa)\n", "P2_ = 30.12; \t\t\t#(kPa)\n", "xb_ = P1_/Pb; \t\t\t#mol fraction of benzene at triple point\n", "\n", "\t\t\t#For the dew point curve\n", "\t\t\t#For curve BE in temp range from 342 to 373 K\n", "y1 = [0,0,0,0,0,0,0]\n", "for i in range(2,7):\n", " y1[i] = 1-(P2[i]/Pb )\n", "\n", "\t\t\t#xset('window',1\n", "T1 = [0,0,0,0,0,0,0]\n", "y1_ = [0,0,0,0,0,0,0]\n", "T1[0] = 342\n", "y1_[0] = 0.7;\n", "for i in range(1,6):\n", " T1[i] = T[i+1];\n", " y1_[i] = y1[i+1];\n", "\n", "plot(y1_,T1)\n", "y2 = [0,0,0,0,0,0,0]\n", "\t\t\t#For the curve Ae in the temp range of 342 K to 353.1 K\n", "for i in range(2,5):\n", " y2[i] = P1[i]/Pb;\n", "\n", "T2 = [0,0,0,0,0,0,0]\n", "y2_ = [0,0,0,0,0,0,0]\n", "T2[0] = 342.;\n", "y2_[0] = 0.7;\n", "for i in range(1,4):\n", " T2[i] = T[i+1]\n", " y2_[i] = y2[i+1]\n", "\n", "plot(y2_,T2)\n", "\t\t\t#axhspan(0.25,0.75,facecolor='0.5'\n", "\t\t\t#title(\"Temperature Composition diagram\",\"xa,ya\",\"Temperature\"\n", "show()\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD9CAYAAABdoNd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG+JJREFUeJzt3X9wVPW9//Hnwey0UqjQK1norvculyQNCyFZS5NMp06X\nhmC9Xtd4caKx0r0K9w+Y3hkL7S38oSZ1JLEt1wFqZrw2fr+x3DFh2oFkOpKJ07JK6dT12mTsddWk\nmmiy+VEhggSkC9nz/WO/LAY2P0g2G7Ln9ZjZYTl79nw+nznwyjvvnJw1TNM0ERGRtDZvticgIiIz\nT2EvImIBCnsREQtQ2IuIWIDCXkTEAhT2IiIWMKmwHxkZwePxcNdddwEwNDREaWkpOTk5bNiwgVOn\nTsX3ra6uJjs7m9zcXFpbW2dm1iIick0mFfZ79+7F7XZjGAYANTU1lJaW0tHRQUlJCTU1NQCEQiEa\nGxsJhUK0tLSwbds2otHozM1eREQmZcKw7+3t5aWXXmLLli1c+v2r5uZm/H4/AH6/n8OHDwPQ1NRE\nRUUFNpsNl8tFVlYWwWBwBqcvIiKTMWHYf//73+enP/0p8+Zd3nVwcBC73Q6A3W5ncHAQgL6+PpxO\nZ3w/p9NJOBxO9pxFROQaZYz34m9+8xsyMzPxeDwEAoGE+xiGEW/vjPX6ZLaJiMjEpnqHm3Er+z/8\n4Q80NzezfPlyKioq+N3vfsemTZuw2+0MDAwA0N/fT2ZmJgAOh4Oenp74+3t7e3E4HGNOOF0fjz/+\n+KzPQevT+qy2NiusbzrGDfvdu3fT09NDV1cXDQ0NfOtb3+KXv/wlPp+P+vp6AOrr6ykrKwPA5/PR\n0NBAJBKhq6uLzs5OCgsLpzVBERGZvnHbOFe61H7ZuXMn5eXl1NXV4XK5OHjwIABut5vy8nLcbjcZ\nGRnU1taqZSMich0wzOl+bzCVQQ1j2t+SXM8CgQBer3e2pzFjtL65K53XBum/vulkp8JeRGSOmE52\n6nYJIiIWoLAXEbEAhb2IiAUo7EVELEBhLyJiAQp7ERELUNiLiFiAwl5ExAKu6XYJIiJWE43C6dPw\n8ccTP4aGYn/+0z/BE0/M9sxHU9iLSNqLRuGTT0YH8mTD+5NPYMECWLx47Mc//MPl51/6EnzmYz2u\nG7pdgojMCZ8N7ETV9HiP06fhC18YHcjjhfdnH4sWQcZ1Uhbr3jgiMieMFdiTCfBPPoH58xMH8kTh\nfT0F9nQo7EUkZSYb2InCe7zAnijA0yWwp0NhLyLXbGQETp6Ev/419phsL/v0abjxxmtvh1wKbJtt\ntlc+d83JsI9Go/pgE5EkGx6+HN6XHoODibcNDcXCNzMTliy5HNyTaYkosGfHnAz7c5Fz3Gi7MdVD\ni8wpFy/CiROTC/C//jXWYrHbYwGemTn6+ZXbbr5ZbZG5ZjphP2unejgyrLAXyzHNWPU9VrV95baP\nP45V2onC+x//8ertX/gC6BtmSWTWwv7shbMsYclsDS+SNBcuxKrvsartK7ffcEPiSjsrC77+9dHb\n/+7vYvuLTNe4YX/+/Hm++c1v8re//Y1IJMLdd99NdXU1lZWV/OIXv2DJklhY7969mzvuuAOA6upq\nnn/+eW644Qb27dvHhg0bEh57ODKc5KWIJIdpxq4aGa9d8tntn3wSC+VE1Xd29ujtS5bEqm+RVJuw\nZ3/u3Dnmz5/PxYsX+cY3vsHPfvYzfvvb37Jw4UK2b98+at9QKMQDDzzA66+/TjgcZv369XR0dDBv\n3uhb8BiGQc+//yvOff8n+SsSGcPFi7GQDoehr2/0Y2BgdIB/7nOJq+9E/e8vfQnm6S5TkgIz2rOf\nP38+AJFIhJGRERYvXgyQcMCmpiYqKiqw2Wy4XC6ysrIIBoMUFxdfta9z//8Fhb0kQTQaa6NcCu5E\nYd7XF9tnyRL48pdHP77+dVi6dHSg36gfJ0mamTDso9Eot956K++99x5bt25l1apV/OpXv2L//v28\n8MILrF27lj179rBo0SL6+vpGBbvT6SQcDs/oAiR9mSacOjU6sMeqym+66eoQLyiAO++8/PfMTF19\nItY14T/9efPm0d7ezunTp7n99tsJBAJs3bqVxx57DIBHH32UHTt2UFdXl/D9Y11LXwlQWQmA1+vF\n6/VOYfoyl5kmfPQRdHVd/ejuht7eWDvlyhDPyYF16y7/fenS2H4i6SYQCBAIBJJyrGu6zv6JJ57g\nxhtv5Ac/+EF8W3d3N3fddRd//vOfqampAWDnzp0AfPvb36aqqoqioqLRgxoGJsT+t0taO3MmcZhf\nenzuc7B8eeKH06kfZop81oz17E+cOEFGRgaLFi3i008/5eWXX+bxxx9nYGCApUuXAnDo0CHy8vIA\n8Pl8PPDAA2zfvp1wOExnZyeFhYVTmpjMDRcuxKrwS+H9/vujw/zcuatD3Ou9/Pymm2Z7BSLWMG7Y\n9/f34/f7iUajRKNRNm3aRElJCd/97ndpb2/HMAyWL1/Os88+C4Db7aa8vBy3201GRga1tbW6JUKa\nGBqCd96Bd9+N/XnpeXc3LFsW+wWfSwFeVhb789Iv/eifgMjsm7XbJUQyb8Y2+FGqh5ZxXLwYC+9E\noX7+POTmwle+Evvz0vOsLPj852d75iLWMCdvl2D7WtHEO8mMOH36cph/NtTffz92+eGlML/1Vnjg\ngVioL1umCl1kLpu9C9H0WygzKhqFDz8cXZ1fen7mTOyKlkuhXl4e+zM7O3avcRFJP7MX9ioTk2J4\nGDo6rg71zs7Yr/BfarusWgX/8i+x5w6HvtaKWI0q+zliZARCIQgGob39crifPBmryC+F+t13w3/8\nR6xyX7hwtmctItcLVfbXqd5eeO21WLi/9hq88Uasb15UFOul33lnLOD//u91V0QRmZjC/jrwySfw\nP/9zOdiDQYhEYsFeVAS7dsHXvha74ZaIyFSojZNiFy7A//7v6Kq9uzt2H5eiIrjvPvjP/wSXS18P\nRSR5VNnPINOEDz4YHezt7bHWS1ERFBbC974HeXn6TE8RmVmq7JPo44/h9dcvh3swGFvmpXZMVRWs\nXatbBIhI6qmyT5KaGnjyydgPT4uKwO+H2trYzbzSbKkiMgfN2u0SzAcegP/+71QPPWPOnIl94IXu\nly4iM2VO3i4h3cpdXdMuItez2Wucp2HPXkTkejV7iZtmlb2IyPVMYS8iYgFq44iIWIAqexERC1Bl\nLyJiAarsRUQsYNywP3/+PEVFRRQUFOB2u9m1axcAQ0NDlJaWkpOTw4YNGzh16lT8PdXV1WRnZ5Ob\nm0tra+s4I6uyFxFJlXET9/Of/zxHjx6lvb2dN998k6NHj/L73/+empoaSktL6ejooKSkhJqaGgBC\noRCNjY2EQiFaWlrYtm0b0Wg08cFV2YuIpMyE5fX8//+hpJFIhJGRERYvXkxzczN+vx8Av9/P4cOH\nAWhqaqKiogKbzYbL5SIrK4tgMDjGyKrsRURSZcLbJUSjUW699Vbee+89tm7dyqpVqxgcHMRutwNg\nt9sZHBwEoK+vj+Li4vh7nU4n4XA44XErX38dKisB8Hq9eL3eaS5FRCS9BAIBAoFAUo41YdjPmzeP\n9vZ2Tp8+ze23387Ro0dHvW4YBsY4LZmxXqssKoqHvYiIXO3KQriqqmrKx5p0L+Wmm27izjvv5I03\n3sButzMwMABAf38/mZmZADgcDnp6euLv6e3txeFwjDGy2jgiIqkybuKeOHEifqXNp59+yssvv4zH\n48Hn81FfXw9AfX09ZWVlAPh8PhoaGohEInR1ddHZ2UlhYWHig+sHtCIiKTNuG6e/vx+/3080GiUa\njbJp0yZKSkrweDyUl5dTV1eHy+Xi4MGDALjdbsrLy3G73WRkZFBbWzt2i0eVvYhIyszeh5ds3w57\n9qR6aBGROWs6H16i2yWIiFiAbpcgImIBCnsREQtQG0dExAJU2YuIWIAqexERC1BlLyJiAarsRUQs\nQJW9iIgFqLIXEbEAVfYiIhagsBcRsQC1cURELECVvYiIBaiyFxGxAFX2IiIWoMpeRMQCVNmLiFiA\nKnsREQuYMHF7enpYt24dq1atYvXq1ezbtw+AyspKnE4nHo8Hj8fDkSNH4u+prq4mOzub3NxcWltb\nEx9Ylb2ISMpkTLSDzWbj6aefpqCggOHhYb761a9SWlqKYRhs376d7du3j9o/FArR2NhIKBQiHA6z\nfv16Ojo6mHdlJa+wFxFJmQkr+6VLl1JQUADAggULWLlyJeFwGCDhp5w3NTVRUVGBzWbD5XKRlZVF\nMBhMMLLaOCIiqTJhZf9Z3d3dtLW1UVxczPHjx9m/fz8vvPACa9euZc+ePSxatIi+vj6Ki4vj73E6\nnfEvDp9VeeQInDwJgNfrxev1Tm8lIiJpJhAIEAgEknKsSYf98PAw9957L3v37mXBggVs3bqVxx57\nDIBHH32UHTt2UFdXl/C9RoKWTeU//zNs2zbFaYuIpL8rC+GqqqopH2tSvZQLFy6wceNGHnzwQcrK\nygDIzMzEMAwMw2DLli3xVo3D4aCnpyf+3t7eXhwOx9UHVc9eRCRlJgx70zTZvHkzbrebRx55JL69\nv78//vzQoUPk5eUB4PP5aGhoIBKJ0NXVRWdnJ4WFhQlGVs9eRCRVJmzjHD9+nAMHDrBmzRo8Hg8A\nu3fv5sUXX6S9vR3DMFi+fDnPPvssAG63m/LyctxuNxkZGdTW1iZs46iyFxFJHcNMdEnNTA9qGJj/\n9V/wb/+W6qFFROYswzASXgU5GfoNWhERC9C9cURELECVvYiIBaiyFxGxAFX2IiIWoMpeRMQCVNmL\niFiAKnsREQtQ2IuIWIDaOCIiFqDKXkTEAlTZi4hYgCp7ERELUGUvImIBquxFRCxAlb2IiAWoshcR\nsQCFvYiIBaiNIyJiARMmbk9PD+vWrWPVqlWsXr2affv2ATA0NERpaSk5OTls2LCBU6dOxd9TXV1N\ndnY2ubm5tLa2Jj6wKnsRkZSZMOxtNhtPP/00b731Fn/84x955plnePvtt6mpqaG0tJSOjg5KSkqo\nqakBIBQK0djYSCgUoqWlhW3bthGNRhOMrMpeRCRVJkzcpUuXUlBQAMCCBQtYuXIl4XCY5uZm/H4/\nAH6/n8OHDwPQ1NRERUUFNpsNl8tFVlYWwWDw6gOrshcRSZmMa9m5u7ubtrY2ioqKGBwcxG63A2C3\n2xkcHASgr6+P4uLi+HucTifhcPiqY1UeOADHjwPg9Xrxer1TXYOISFoKBAIEAoGkHGvSYT88PMzG\njRvZu3cvCxcuHPWaYRgY41TqiV6r9PvhW9+6hqmKiFjLlYVwVVXVlI81qcb5hQsX2LhxI5s2baKs\nrAyIVfMDAwMA9Pf3k5mZCYDD4aCnpyf+3t7eXhwOx9UHVRtHRCRlJgx70zTZvHkzbrebRx55JL7d\n5/NRX18PQH19ffyLgM/no6GhgUgkQldXF52dnRQWFiYYWT+gFRFJlQnbOMePH+fAgQOsWbMGj8cD\nxC6t3LlzJ+Xl5dTV1eFyuTh48CAAbreb8vJy3G43GRkZ1NbWJm7xqLIXEUkZwzRNM+WDGgbmsWPw\njW+kemgRkTnLMAymGtm6XYKIiAXodgkiIhagyl5ExAJU2YuIWIAqexERC1DYi4hYgNo4IiIWoMpe\nRMQCVNmLiFiAKnsREQtQZS8iYgGq7EVELECVvYiIBaiyFxGxAIW9iIgFqI0jImIBquxFRCxAlb2I\niAWoshcRsYAJw/7hhx/GbreTl5cX31ZZWYnT6cTj8eDxeDhy5Ej8terqarKzs8nNzaW1tXWckVXZ\ni4ikyoSJ+9BDD9HS0jJqm2EYbN++nba2Ntra2rjjjjsACIVCNDY2EgqFaGlpYdu2bUSj0cQHVmUv\nIpIyE4b9bbfdxuLFi6/anugTzpuamqioqMBms+FyucjKyiIYDI4xsip7EZFUyZjqG/fv388LL7zA\n2rVr2bNnD4sWLaKvr4/i4uL4Pk6nk3A4nPD9lU8/DQsXAuD1evF6vVOdiohIWgoEAgQCgaQca0ph\nv3XrVh577DEAHn30UXbs2EFdXV3CfY0x2jWVO3bAl788leFFRCzhykK4qqpqyseaUi8lMzMTwzAw\nDIMtW7bEWzUOh4Oenp74fr29vTgcjjFGVhtHRCRVppS4/f398eeHDh2KX6nj8/loaGggEonQ1dVF\nZ2cnhYWFiQ+iH9CKiKTMhG2ciooKXnnlFU6cOMEtt9xCVVUVgUCA9vZ2DMNg+fLlPPvsswC43W7K\ny8txu91kZGRQW1s7ZhtHlb2ISOoYZqLLamZ6UMPA/OgjuPnmVA8tIjJnGYaR8ErIydDtEkRELEC3\nSxARsQCFvYiIBaiNIyJiAarsRUQsQJW9iIgFqLIXEbEAVfYiIhagyl5ExAJU2YuIWIAqexERC1DY\ni4hYgNo4IiIWoMpeRMQCVF6LiFiAwl5ExAIU9iIiFqCwFxGxAIW9iIgFTBj2Dz/8MHa7nby8vPi2\noaEhSktLycnJYcOGDZw6dSr+WnV1NdnZ2eTm5tLa2jozsxYRkWsyYdg/9NBDtLS0jNpWU1NDaWkp\nHR0dlJSUUFNTA0AoFKKxsZFQKERLSwvbtm0jGo3OzMxFRGTSJgz72267jcWLF4/a1tzcjN/vB8Dv\n93P48GEAmpqaqKiowGaz4XK5yMrKIhgMzsC0RUTkWmRM5U2Dg4PY7XYA7HY7g4ODAPT19VFcXBzf\nz+l0Eg6HEx6jsrIy/tzr9eL1eqcyFRGRtBUIBAgEAkk51pTC/rMMw8AY57dhx3rts2EvIiJXu7IQ\nrqqqmvKxpnQ1jt1uZ2BgAID+/n4yMzMBcDgc9PT0xPfr7e3F4XBMeXIiIpIcUwp7n89HfX09APX1\n9ZSVlcW3NzQ0EIlE6OrqorOzk8LCwuTNVkREpmTCNk5FRQWvvPIKJ06c4JZbbuHHP/4xO3fupLy8\nnLq6OlwuFwcPHgTA7XZTXl6O2+0mIyOD2tracVs8IiKSGoZpmmbKBzUMZmFYEZE5bTrZqd+gFRGx\nAIW9iIgFKOxFRCxAYS8iYgEKexERC1DYi4hYgMJeRMQCFPYiIhagsBcRsQCFvYiIBSjsRUQsQGEv\nImIBCnsREQtQ2IuIWIDCXkTEAhT2IiIWoLAXEbEAhb2IiAVM+Bm043G5XHzxi1/khhtuwGazEQwG\nGRoa4r777uODDz6Ifz7tokWLkjVfERGZgmlV9oZhEAgEaGtrIxgMAlBTU0NpaSkdHR2UlJRQU1OT\nlImKiMjUTbuNc+WH3zY3N+P3+wHw+/0cPnx4ukOIiMg0TbuyX79+PWvXruW5554DYHBwELvdDoDd\nbmdwcHD6sxQRkWmZVs/++PHjLFu2jI8++ojS0lJyc3NHvW4YBoZhJHxvZWVl/LnX68Xr9U5nKiIi\naScQCBAIBJJyLMO8sg8zRVVVVSxYsIDnnnuOQCDA0qVL6e/vZ926dbzzzjujBzWMq9o/IiIyvulk\n55TbOOfOnePMmTMAnD17ltbWVvLy8vD5fNTX1wNQX19PWVnZVIcQEZEkmXJl39XVxT333APAxYsX\n+c53vsOuXbsYGhqivLycDz/8cMxLL1XZi4hcu+lkZ9LaONc0qMJeROSazUobR0RE5g6FvYiIBSjs\nRUQsQGEvImIBCnsREQtQ2IuIWIDCXkTEAhT2IiIWoLAXEbEAhb2IiAUo7EVELEBhLyJiAQp7EREL\nUNiLiFiAwl5ExAIU9iIiFqCwFxGxAIW9iIgFKOxFRCxgRsK+paWF3NxcsrOzeeqpp2ZiiOtaIBCY\n7SnMKK1v7krntUH6r286kh72IyMjfO9736OlpYVQKMSLL77I22+/nexhrmvp/g9O65u70nltkP7r\nm46kh30wGCQrKwuXy4XNZuP++++nqakp2cOIiMg1SHrYh8NhbrnllvjfnU4n4XA42cOIiMg1MEzT\nNJN5wF//+te0tLTw3HPPAXDgwAFee+019u/ff3lQw0jmkCIiljHVyM5I8jxwOBz09PTE/97T04PT\n6Ry1T5K/voiIyASS3sZZu3YtnZ2ddHd3E4lEaGxsxOfzJXsYERG5Bkmv7DMyMvj5z3/O7bffzsjI\nCJs3b2blypXJHkZERK7BjFxnf8cdd/Duu+/yl7/8hV27do16Ld2uwXe5XKxZswaPx0NhYSEAQ0ND\nlJaWkpOTw4YNGzh16tQsz3LyHn74Yex2O3l5efFt462nurqa7OxscnNzaW1tnY0pX5NE66usrMTp\ndOLxePB4PBw5ciT+2lxbX09PD+vWrWPVqlWsXr2affv2AelxDsdaW7qcv/Pnz1NUVERBQQFutzue\nnUk7d2YKXbx40VyxYoXZ1dVlRiIRMz8/3wyFQqmcQtK5XC7z5MmTo7b98Ic/NJ966inTNE2zpqbG\n/NGPfjQbU5uSV1991fzTn/5krl69Or5trPW89dZbZn5+vhmJRMyuri5zxYoV5sjIyKzMe7ISra+y\nstLcs2fPVfvOxfX19/ebbW1tpmma5pkzZ8ycnBwzFAqlxTkca23pdP7Onj1rmqZpXrhwwSwqKjKP\nHTuWtHOX0tslpOs1+OYVP3Bubm7G7/cD4Pf7OXz48GxMa0puu+02Fi9ePGrbWOtpamqioqICm82G\ny+UiKyuLYDCY8jlfi0Trg8QXDczF9S1dupSCggIAFixYwMqVKwmHw2lxDsdaG6TP+Zs/fz4AkUiE\nkZERFi9enLRzl9KwT8dr8A3DYP369axduzZ+ueng4CB2ux0Au93O4ODgbE5x2sZaT19f36grreby\n+dy/fz/5+fls3rw5/m3yXF9fd3c3bW1tFBUVpd05vLS24uJiIH3OXzQapaCgALvdHm9ZJevcpTTs\n0/H6+uPHj9PW1saRI0d45plnOHbs2KjXDcNIq3VPtJ65uNatW7fS1dVFe3s7y5YtY8eOHWPuO1fW\nNzw8zMaNG9m7dy8LFy4c9dpcP4fDw8Pce++97N27lwULFqTV+Zs3bx7t7e309vby6quvcvTo0VGv\nT+fcpTTsJ3MN/lyzbNkyAJYsWcI999xDMBjEbrczMDAAQH9/P5mZmbM5xWkbaz1Xns/e3l4cDses\nzHE6MjMz4/+JtmzZEv9WeK6u78KFC2zcuJFNmzZRVlYGpM85vLS2Bx98ML62dDt/ADfddBN33nkn\nb7zxRtLOXUrDPt2uwT937hxnzpwB4OzZs7S2tpKXl4fP56O+vh6A+vr6+D/KuWqs9fh8PhoaGohE\nInR1ddHZ2Rm/Imku6e/vjz8/dOhQ/Eqdubg+0zTZvHkzbrebRx55JL49Hc7hWGtLl/N34sSJeAvq\n008/5eWXX8bj8STv3M3oj5YTeOmll8ycnBxzxYoV5u7du1M9fFK9//77Zn5+vpmfn2+uWrUqvp6T\nJ0+aJSUlZnZ2tllaWmp+/PHHszzTybv//vvNZcuWmTabzXQ6nebzzz8/7nqefPJJc8WKFeZXvvIV\ns6WlZRZnPjlXrq+urs7ctGmTmZeXZ65Zs8a8++67zYGBgfj+c219x44dMw3DMPPz882CggKzoKDA\nPHLkSFqcw0Rre+mll9Lm/L355pumx+Mx8/Pzzby8PPMnP/mJaZrj58m1rC/p98YREZHrjz6pSkTE\nAhT2IiIWoLAXEbEAhb2IiAUo7EVELEBhLyJiAf8PLH4K5zRwZxUAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 47 } ], "metadata": {} } ] }