{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6:Laminar and turbulent boundary layers " ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.2, Page number: 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Variables\n", "T1=300; #air temperature,K\n", "v=1.5; #air velocity, m/s\n", "t=0.5; #thickness, m\n", "u=1.853*math.pow(10,-5); #dynamic viscosity,kg/(m*s)\n", "v1=1.566*math.pow(10,-5); #kinematic viscosity,m**2/s\n", "\n", "#Calculations\n", "Rex=v*t/v1; #reynolds no. is low enough to permit the use of laminar flow analysis.\n", "b=4.92*t/(math.sqrt(Rex))*100; # b.l. thickness, cm\n", "#in this case b/x=1.124/50=0.0225 so laminar flow is valid.\n", "v2=0.8604*math.sqrt(v1*v/t);\n", "#since v2 grows larger as x grows smaller, the condition v2