{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#6(A): Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.1, Page number 6.21" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of electron hole pairs is 2.32 *10**16 per cubic metre\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni1=2.5*10**19; #number of electron hole pairs\n", "T1=300; #temperature(K)\n", "Eg1=0.72*1.6*10**-19; #energy gap(J)\n", "k=1.38*10**-23; #boltzmann constant\n", "T2=310; #temperature(K)\n", "Eg2=1.12*1.6*10**-19; #energy gap(J)\n", "\n", "#Calculation\n", "x1=-Eg1/(2*k*T1);\n", "y1=(T1**(3/2))*math.exp(x1);\n", "x2=-Eg2/(2*k*T2);\n", "y2=(T2**(3/2))*math.exp(x2);\n", "ni=ni1*(y2/y1); #number of electron hole pairs\n", "\n", "#Result\n", "print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.2, Page number 6.22" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intrinsic conductivity is 1.434 *10**4 ohm-1 m-1\n", "intrinsic resistivity is 0.697 *10**-4 ohm m\n", "answer varies due to rounding off errors\n", "number of germanium atoms per m**3 is 4.5 *10**28\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "w=72.6; #atomic weight\n", "d=5400; #density(kg/m**3)\n", "Na=6.025*10**26; #avagadro number\n", "mew_e=0.4; #mobility of electron(m**2/Vs)\n", "mew_h=0.2; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "m=9.108*10**-31; #mass(kg)\n", "ni=2.1*10**19; #number of electron hole pairs\n", "Eg=0.7; #band gap(eV)\n", "k=1.38*10**-23; #boltzmann constant\n", "h=6.625*10**-34; #plancks constant\n", "T=300; #temperature(K)\n", "\n", "#Calculation\n", "sigmab=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", "rhob=1/sigmab; #resistivity(ohm m)\n", "n=Na*d/w; #number of germanium atoms per m**3\n", "p=n/10**5; #boron density\n", "sigma=p*e*mew_h;\n", "rho=1/sigma;\n", "\n", "#Result\n", "print \"intrinsic conductivity is\",round(sigma/10**4,3),\"*10**4 ohm-1 m-1\"\n", "print \"intrinsic resistivity is\",round(rho*10**4,3),\"*10**-4 ohm m\"\n", "print \"answer varies due to rounding off errors\"\n", "print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.3, Page number 6.23" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "charge carrier density is 2 *10**22 per m**3\n", "electron mobility is 0.035 m**2/Vs\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19;\n", "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n", "sigma=112; #conductivity(ohm-1 m-1)\n", "\n", "#Calculation\n", "ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n", "mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n", "\n", "#Result\n", "print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n", "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.4, Page number 6.24" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1 10.4\n", "conductivity during donor impurity is 10.4 ohm-1 m-1\n", "conductivity during acceptor impurity is 4 ohm-1 m-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mew_e=0.13; #mobility of electron(m**2/Vs)\n", "mew_h=0.05; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=1.5*10**16; #number of electron hole pairs\n", "N=5*10**28;\n", "\n", "#Calculation\n", "sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", "ND=N/10**8;\n", "n=ni**2/ND;\n", "sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n", "sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n", "\n", "#Result\n", "print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\",sigma2\n", "print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n", "print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.5, Page number 6.24" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "conductivity is 4.97 mho m-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19;\n", "Eg=0.72; #band gap(eV)\n", "k=1.38*10**-23; #boltzmann constant\n", "T1=293; #temperature(K)\n", "T2=313; #temperature(K)\n", "sigma1=2; #conductivity(mho m-1)\n", "\n", "#Calculation\n", "x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n", "y=round(x/2.303,3);\n", "z=round(math.log10(sigma1),3);\n", "log_sigma2=y+z;\n", "sigma2=10**log_sigma2; #conductivity(mho m-1)\n", "\n", "#Result\n", "print \"conductivity is\",round(sigma2,2),\"mho m-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.6, Page number 6.25" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a)Concentration in N-type\n", "n = 1.442 *10**24 m**-3\n", "Hence p = 1.56 *10**8 m**-3\n", "b)Concentration in P-type\n", "p = 3.75 *10**24 m**-3\n", "Hence n = 0.6 *10**8 m**-3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=1.5*10**16\n", "mu_n=1300*10**-4\n", "mu_p=500*10**-4\n", "e=1.6*10**-19\n", "sigma=3*10**4\n", "\n", "#Calculations\n", "#Concentration in N-type\n", "n1=sigma/(e*mu_n)\n", "p1=ni**2/n1\n", "#Concentration in P-type\n", "p=sigma/(e*mu_p)\n", "n2=(ni**2)/p\n", "\n", "#Result\n", "print\"a)Concentration in N-type\"\n", "print\"n =\",round(n1*10**-24,3),\"*10**24 m**-3\"\n", "print\"Hence p =\",round(p1/10**8,2),\"*10**8 m**-3\"\n", "print\"b)Concentration in P-type\"\n", "print\"p =\",round(p/10**24,2),\"*10**24 m**-3\"\n", "print\"Hence n =\",round(n2/10**8,1),\"*10**8 m**-3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.7, Page number 6.26" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Jx = 1000.0 ampere/m**2\n", "Ey = 0.183 V/m\n", "Vy = 1.83 mV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "i=10**-2\n", "A=0.01*0.001\n", "RH=3.66*10**-4\n", "Bz=0.5\n", "\n", "#Calculations\n", "Jx=i/A\n", "Ey=RH*(Bz*Jx)\n", "Vy=Ey*0.01\n", "\n", "#Result\n", "print\"Jx =\",Jx,\"ampere/m**2\"\n", "print\"Ey =\",round(Ey,3),\"V/m\"\n", "print\"Vy =\",round(Vy*10**3,2),\"mV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.8, Page number 6.26" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Position of fermi level = 0.5764 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Ev=0\n", "Ec=1.12\n", "k=1.38*10**-23\n", "T=300\n", "mh=0.28\n", "mc=0.12\n", "e=1.6*10**-19\n", "#Calculations\n", "Ef=((Ec+Ev)/2)+((3*k*T)/(4*e))*math.log(mh/mc)\n", "\n", "#Result\n", "print\"Position of fermi level =\",round(Ef,4),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.9, Page number 6.26" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Conductivity of intrinsic germanium at 300K = 2.24 ohm**-1 m**-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=2.5*10**19\n", "mu_e=0.38\n", "mu_h=0.18\n", "e=1.6*10**-19\n", "\n", "#Calculations\n", "sigmai=ni*e*(mu_e+mu_h)\n", "\n", "#Result\n", "print\"Conductivity of intrinsic germanium at 300K =\",round(sigmai,2),\"ohm**-1 m**-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.10, Page number 6.27" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Conductivity = 1.1593 *10**-3 ohm**-1 m**-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m=9.1*10**-31\n", "k=1.38*10**-23\n", "T=300\n", "h=6.626*10**-34\n", "Eg=1.1\n", "e=1.6*10**-19\n", "mu_e=0.48\n", "mu_h=0.013\n", "#Calculations\n", "ni=2*((2*math.pi*m*k*T)/h**2)**(3/2)*math.exp(-(Eg*e)/(2*k*T))\n", "sigma=ni*e*(mu_e+mu_h)\n", " \n", "#Result\n", "print\"Conductivity =\",round(sigma*10**3,4),\"*10**-3 ohm**-1 m**-1\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.11, Page number 6.27" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "p = 2.0 *10**23 m**-3\n", "The electron concentration is given by n = 2.0 *10**9 m**-3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Na=5*10**23\n", "Nd=3*10**23\n", "ni=2*10**16\n", "#Calculations\n", "p=((Na-Nd)+(Na-Nd))/2\n", "\n", "#Result\n", "print\"p =\",p*10**-23,\"*10**23 m**-3\"\n", "print\"The electron concentration is given by n =\",ni**2/p*10**-9,\"*10**9 m**-3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.12, Page number 6.28" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rh = 3.7 *10**-6 C**-1 m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Vh=37*10**-6\n", "thick=1*10**-3\n", "width=5\n", "Iy=20*10**-3\n", "Bz=0.5\n", "\n", "#Calculations\n", "Rh=(Vh*width*thick)/(width*Iy*Bz)\n", "\n", "#Result\n", "print\"Rh =\",round(Rh*10**6,1),\"*10**-6 C**-1 m**3\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.13, Page number 6.28" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dn = 33.54 cm**2 s**-1\n", "Dp = 12.9 cm**2 s**-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Vt=0.0258\n", "mu_n=1300\n", "mu_p=500\n", "\n", "#Calculations\n", "Dn=Vt*mu_n\n", "Dp=Vt*mu_p\n", "\n", "#Result\n", "print\"Dn =\",Dn,\"cm**2 s**-1\"\n", "print\"Dp =\",Dp,\"cm**2 s**-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.14, Page number 6.29" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The hole concentration 'p' = 1.125 *10**13 /m**3\n", "'n'= Nd = 2.0 *10**19\n", "Electrical Conductivity = 0.384 ohm**-1 m**-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=1.5*10**16\n", "Nd=2*10**19\n", "e=1.602*100**-19\n", "mu_n=0.12\n", "\n", "#Calculations\n", "p=ni**2/Nd\n", "E_c=e*Nd*mu_n\n", "\n", "#Result\n", "print\"The hole concentration 'p' =\",round(p*10**-13,3),\"*10**13 /m**3\"\n", "print\"'n'= Nd =\",round(Nd*10**-19),\"*10**19\"\n", "print\"Electrical Conductivity =\",round(E_c*10**19,3),\"ohm**-1 m**-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.15, Page number 6.29" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mu_p= 1389.0 cm**2/V-s\n", "n= 6.0355 *10**13/cm**3\n", "p= 1.0355 *10**13/cm**3\n", "J= 582.5 A/m**2\n", "#Answer varies due to rounding of numbers\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=1/60\n", "e=1.6*10**-19\n", "ni=2.5*10**13\n", "b=5*10**13\n", "E=2\n", "\n", "#Calculations\n", "n=(b+math.sqrt(2*b**2))/2\n", "mu_p=N/(3*e*ni)\n", "mu_i=2*mu_p\n", "np=ni**2\n", "p=(ni**2)/n\n", "e=1.6*10**-19\n", "E=2\n", "J=(e*E)*((n*mu_i)+(p*mu_p))\n", "#Result\n", "print\"mu_p=\",round(mu_p),\"cm**2/V-s\"\n", "print\"n=\",round(n/10**13,4),\"*10**13/cm**3\"\n", "print\"p=\",round(p*10**-13,4),\"*10**13/cm**3\"\n", "print\"J=\",round(J*10**4,1),\"A/m**2\"\n", "print\"#Answer varies due to rounding of numbers\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 6.16, Page number 6.30" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ni = 2.293 *10**19 /m**3\n", "Drift velocity of holes 1900.0 ms**-1\n", "Drift velocity of electrons= 3900.0 ms**-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=47*10**-2\n", "e=1.6*10**-19\n", "mu_n=0.39\n", "mu_p=0.19\n", "E=10**4\n", "\n", "#Calculations\n", "ni=1/(rho*e*(mu_n+mu_p))\n", "Dh=mu_p*E\n", "De=mu_n*E\n", "\n", "#Results\n", "print\"ni =\",round(ni/10**19,3),\"*10**19 /m**3\"\n", "print\"Drift velocity of holes\",Dh,\"ms**-1\"\n", "print\"Drift velocity of electrons=\",De,\"ms**-1\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }