{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#Chapter 1(A):Bonding in Solids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.1, Page number 1.14" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-2*a/r**3 + 90*b/r**11\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from sympy import *\n", "import numpy as np\n", "\n", "#Variable declaration\n", "n=1;\n", "m=9;\n", "a=Symbol('a')\n", "b=Symbol('b')\n", "r=Symbol('r')\n", "\n", "#Calculation\n", "y=(-a/(r**n))+(b/(r**m));\n", "y=diff(y,r);\n", "y=diff(y,r);\n", "\n", "#Result\n", "print y\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "young's modulus is 157 GPa\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=7.68*10**-29; \n", "r0=2.5*10**-10; #radius(m)\n", "\n", "#Calculation\n", "b=a*(r0**8)/9;\n", "y=((-2*a*r0**8)+(90*b))/r0**11; \n", "E=y/r0; #young's modulus(Pa)\n", "\n", "#Result\n", "print \"young's modulus is\",int(E/10**9),\"GPa\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.2, Page number 1.15" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Effective charge = 0.72 *10**-29 coulomb\n" ] } ], "source": [ "import math\n", "\n", "#variable declarations\n", "d=((1.98)*10**-29)*1/3; #dipole moment\n", "b=(0.92); #bond length\n", "EC=d/(b*10**-10); #Effective charge\n", "\n", "#Result\n", "print \"Effective charge =\",round((EC*10**19),2),\"*10**-29 coulomb\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.3, Page number 1.15" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cohesive energy = 668.9 *10**3 kJ/kmol\n", "#Answer varies due to rounding of numbers\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "A=1.748 #Madelung Constant \n", "N=6.02*10**26 #Avagadro Number\n", "e=1.6*10**-19\n", "n=9.5\n", "r=(0.324*10**-9)*10**3\n", "E=8.85*10**-12\n", "#Calculations\n", "U=((N*A*(e)**2)/(4*math.pi*E*r))*(1-1/n) #Cohesive energy\n", "\n", "#Result\n", "print \"Cohesive energy =\",round(U/10**3,1),\"*10**3 kJ/kmol\"\n", "print \"#Answer varies due to rounding of numbers\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.4, Page number 1.15" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coulomb energy = -2.88 eV\n", "Energy required = -1.88 eV\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "#variable declaration\n", "I=5; #Ionisation energy\n", "A=4; #Electron Affinity\n", "e=(1.6*10**-19)\n", "E=8.85*10**-12 #epsilon constant\n", "r=0.5*10**-19 #dist between A and B\n", "\n", "#Calculations\n", "C=-(e**2/(4*math.pi*E*r*e))/10**10 #Coulomb energy\n", "E_c=I-A+C #Energy required\n", "\n", "#Result\n", "print \"Coulomb energy =\",round(C,2),\"eV\"\n", "print \"Energy required =\",round(E_c,2),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.5, Page number 1.16" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Energy required= 1.49 eV\n", "Distance of separation = 9.66 Angstrom\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "I=5.14; #Ionization energy\n", "A=3.65; #Electron Affinity\n", "e=(1.6*10**-19);\n", "E=8.85*10**-12; \n", "#calculations\n", "E_c=I-A #Energy required\n", "r=e**2/(4*math.pi*E*E_c*e) #Distance of separation\n", "\n", "#Result\n", "print \"Energy required=\",E_c,\"eV\"\n", "print \"Distance of separation =\",round(r/10**-10,2),\"Angstrom\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 1.6, Page number 1.16" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Energy required= 1.49 eV\n", "Energy required = -6.1 eV\n", "Bond Energy = 4.61 eV\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration \n", "I=5.14; #Ionization energy\n", "A=3.65; #Electron Affinity\n", "e=(1.6*10**-19);\n", "E=8.85*10**-12; \n", "r=236*10**-12;\n", "\n", "#Calculations\n", "E_c=I-A #Energy required\n", "C=-(e**2/(4*math.pi*E*r*e)) #Potentential energy in eV\n", "BE=-(E_c+C) #Bond Energy\n", "#Result\n", "print \"Energy required=\",E_c,\"eV\"\n", "print \"Energy required =\",round(C,1),\"eV\"\n", "print \"Bond Energy =\",round(BE,2),\"eV\"\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }