From d199b0419ff419088361c5dfb4e6fac9c3f4d135 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Wed, 20 Jan 2016 23:30:20 +0600 Subject: Added(A)/Deleted(D) following books A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER01.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER02.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER03.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER04.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER05.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER07.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER08.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/CHAPTER09.ipynb A Network_Analysis_and_Synthesis_by_B_R_Gupta/screenshots/Capture02.png A Network_Analysis_and_Synthesis_by_B_R_Gupta/screenshots/Capture04.png A Network_Analysis_and_Synthesis_by_B_R_Gupta/screenshots/Capture08.png A sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb A sample_notebooks/VidyaSri/CHAPTER07.ipynb A sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb --- .../Chapter_1_Passive_Circuits.ipynb | 370 +++++++++++ sample_notebooks/VidyaSri/CHAPTER07.ipynb | 561 +++++++++++++++++ sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb | 680 +++++++++++++++++++++ 3 files changed, 1611 insertions(+) create mode 100644 sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb create mode 100644 sample_notebooks/VidyaSri/CHAPTER07.ipynb create mode 100644 sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb (limited to 'sample_notebooks') diff --git a/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb b/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb new file mode 100644 index 00000000..916e874c --- /dev/null +++ b/sample_notebooks/SumadhuriDamerla/Chapter_1_Passive_Circuits.ipynb @@ -0,0 +1,370 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1 Passive Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.2, Pg.no.5" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R is 16.61 ohm\n", + "The value of resistance R3 is 66.82 ohm\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "Ro=50.0\n", + "ILdB=6.0 #T−type attenuator provide 6−dB insertion loss \n", + "#calculation\n", + "IL=10**-(ILdB/20) #Determination of R\n", + "R=Ro*(1-IL)/(1+IL)\n", + "R=round(R,2)\n", + "print 'The value of resistance R is',R,'ohm' \n", + "#Determination of R3\n", + "R3=(2*Ro*IL)/(1-(0.5)**2)\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.3,Pg.no.7" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance RA and RB is 150.5 ohm\n", + "The value of resistance RC is 37.35 ohm\n" + ] + } + ], + "source": [ + "import math\n", + "#given\n", + "Ro=50.0\n", + "ILdB=6.0\n", + "IL=10**-(ILdB/20) #Determination of RA and RB\n", + "RA=Ro*(1+IL)/(1-IL)\n", + "RA=round(RA,1)\n", + "print 'The value of resistance RA and RB is',RA,'ohm'\n", + "#Determination of RC\n", + "RC=Ro*(1-(IL)**2)/(2*IL)\n", + "RC=round(RC,2)\n", + "print 'The value of resistance RC is',RC,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.4,Pg.no.9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R1 is 1.0 ohm\n", + "The value of resistance R3 is 5624.0 ohm\n", + "The value of insertion loss is 0.12 decibels\n" + ] + } + ], + "source": [ + "import math\n", + "from math import log10\n", + "#given\n", + "Rs=75.0 #resistance\n", + "Rl=50.0 \n", + "#Determination of R1\n", + "R1=(Rs*(Rs-Rl))**(1/2)\n", + "R1=round(R1,2)\n", + "print 'The value of resistance R1 is',R1,'ohm'\n", + "#Determination of R3\n", + "R3=((Rs**2)-(R1**2))/R1\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'\n", + "#Determination of insertion loss\n", + "IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)**2)\n", + "ILdB=-20*log10(IL) #convertion of power in decibels\n", + "ILdB=round(ILdB,2)\n", + "print 'The value of insertion loss is',ILdB,'decibels'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2.5,Pg.no.10" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of resistance R2 is 1.0 ohm\n", + "The value of resistance R3 is 2499.0 ohm\n", + "The value of insertion loss is 0.2 decibels\n" + ] + } + ], + "source": [ + "from math import log10\n", + "Rs=10.0\n", + "Rl=50.0 #Determination of R2\n", + "R2=(Rl*(Rl-Rs))**(1/2)\n", + "R2=round(R2,2)\n", + "print 'The value of resistance R2 is',R2,'ohm'\n", + "#Determination of R3\n", + "R3=((Rl**2)-(R2**2))/R2\n", + "R3=round(R3,2)\n", + "print 'The value of resistance R3 is',R3,'ohm'\n", + "#Determination of insertion loss\n", + "IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)**2)\n", + "ILdB=-20*log10(IL) #convertion of power in decibels\n", + "ILdB=round(ILdB,1)\n", + "print 'The value of insertion loss is',ILdB,'decibels'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5.1,Pg.no.21" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of self resonant freq is 60.2 MHz\n", + "The value of Q−factor is 31.4\n", + "The value of effective inductance is -5.79846400003e-12 uH\n", + "The value of effective Q−factor is -5.41522720497e+12\n" + ] + } + ], + "source": [ + "import math\n", + "C=7*10**-12\n", + "R=5.0\n", + "L=10**-6\n", + "f=25*10**6 \n", + "#Determination of self resonant freq of coil denoted as Fsr\n", + "Fsr=1/(2*3.14*(L*C)**0.5)\n", + "Fsr=Fsr/(10**6)\n", + "Fsr=round(Fsr,1)\n", + "print 'The value of self resonant freq is',Fsr,'MHz'\n", + "#Determination of Q−factor of coil , excluding self − capacitive effects\n", + "Q=(2*3.14*f*L)/R\n", + "print 'The value of Q−factor is',Q\n", + "#Determination of effective inductance\n", + "Leff=L/(1-(f/Fsr)**2)\n", + "Leff=Leff*(10**6)\n", + "#Leff=round(Leff,0)\n", + "print 'The value of effective inductance is',Leff,'uH'\n", + "#Determination of effective Q−factor\n", + "Qeff=Q*(1-(f/Fsr)**2)\n", + "Qeff=round(Qeff,0)\n", + "print 'The value of effective Q−factor is',Qeff" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8.1,Pg.no.26" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of common resonant freq is 1e-06 Mrad/sec\n", + "The transfer impedance is -6.83732235918e-05 ohm\n" + ] + } + ], + "source": [ + "import cmath\n", + "#given\n", + "Lp=150*10**-6 #inductance\n", + "Ls=150*10**-6\n", + "Cp=470*10**-12 #capacitance\n", + "Cs=470*10**-12 #Lp=Ls=150 uH,Cp=Cs=470 pF\n", + "Q=85.0 #Q−factor for each ckt is 85\n", + "c=0.01 #Coeff of coupling is 0.01\n", + "Rl=5000.0 #Load resistance Rl=5000 ohm\n", + "r=75000.0 #Constant current source with internal resistance r=75 kohm\n", + "#calculations\n", + "#Determination of common resonant frequency\n", + "wo=1/((Lp*Cp)**(1/2))\n", + "wo=wo/(10**6)\n", + "print 'The value of common resonant freq is',wo,'Mrad/sec'\n", + "p=3.77*10**6\n", + "Z2=complex(62.9004,557.266) #Formula=Rl/(1+(p*j*Cs*Rl))\n", + "Z1=complex(4.2465,564.33) #Formula=r/(1+(p*j*Cp*r)) ;At resonance Zs=Zp=Z\n", + "z=complex(0,1)\n", + "Z=wo*Ls*(1/Q +z)\n", + "Zm=complex(0,p*c*Lp) #Determination of denominator\n", + "Dr=((Z+Z1)*(Z+Z2))-(Zm**2) \n", + "#Hence transfer impedance is given as\n", + "Zr= (Z1*Z2*Zm)/Dr\n", + "Z=Zr.real\n", + "#Z=round(Z,2)\n", + "#Zr.imag=round(Zr.imag,2)\n", + "print 'The transfer impedance is',Z,'ohm'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10.1,Pg.no.34" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of common resonant freq is 169.56 Mrad/ sec\n", + "The value of Gl is 5.0 mSec\n", + "The value of alpha is 3.14\n", + "The value of effective load is 1.97 kohm\n", + "The value of tuning capacitance is 47.73 pF\n", + "The value of Rd is 1.85343097504e-05 kohm\n", + "The value of −3dB BW is 1.69 MHz\n" + ] + } + ], + "source": [ + "import math\n", + "C1=70*10**-12\n", + "C2=150*10**-12\n", + "Rl=200.0\n", + "Q=150.0\n", + "f=27*10**6\n", + "r=40000.0\n", + "#Determination of common resonant freq\n", + "wo=2*3.14*f\n", + "wo=wo/(10**6)\n", + "print 'The value of common resonant freq is',wo,'Mrad/ sec'\n", + "#Determination of Gl\n", + "Gl=1/Rl\n", + "G1=Gl*(10**3) \n", + "print'The value of Gl is',G1,'mSec'\n", + "#Checking the approxiamtion in denominator\n", + "ap=((wo*(C1+C2))/(Gl))**2\n", + "alpha=(C1+C2)/C1\n", + "alpha=round(alpha,2)\n", + "print 'The value of alpha is',alpha\n", + "#Determination of effective load\n", + "Reff=((alpha)**2)*Rl\n", + "Reff=Reff/(10**3)\n", + "Reff=round(Reff,2)\n", + "print 'The value of effective load is',Reff,'kohm' \n", + "#If effective load is much less than internal resistance hence tuning capacitance then\n", + "Cs=C1*C2/(C1+C2)\n", + "Cs=Cs*(10**12)\n", + "Cs=round(Cs,2)\n", + "print 'The value of tuning capacitance is',Cs,'pF'\n", + "#Determination of Rd\n", + "Rd=Q/(wo*Cs)\n", + "Rd=Rd/(10**3)\n", + "print 'The value of Rd is',Rd,'kohm'\n", + "#If Rd is much greater than Reff then −3dB bandwidth is given by\n", + "B=1/(2*3.14*C2*alpha*Rl)\n", + "B=B/(10**6)\n", + "B=round(B,2)\n", + "print 'The value of −3dB BW is',B,'MHz'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/VidyaSri/CHAPTER07.ipynb b/sample_notebooks/VidyaSri/CHAPTER07.ipynb new file mode 100644 index 00000000..5f7bf237 --- /dev/null +++ b/sample_notebooks/VidyaSri/CHAPTER07.ipynb @@ -0,0 +1,561 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3dc67beaeaebdd84d2ec4524cdbfb840dc3f84ff2b897336112b72f4746f9690" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER07:BJT FUNDAMENTALS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E01 : Pg 342" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_1\n", + "#clc;\n", + "#clear;\n", + "#close;\n", + "# given data : \n", + "#format('v',6);\n", + "alfa=0.90;# current gain\n", + "ICO=15.;# micro A(reverse saturation currenrt)\n", + "IE=4.;# mA(Emitter currenrt)\n", + "IC=ICO*10.**-3.+alfa*IE;# mA\n", + "IB=IE-IC;# mA\n", + "IB=IB*1000.;# micro A\n", + "print\"Collector Current(mA)\",IC\n", + "print\"Base Current(micro A)\",IB" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Collector Current(mA) 3.615\n", + "Base Current(micro A) 385.0\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E02 : Pg 342" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_2\n", + "#clc;\n", + "#clear;\n", + "#close;\n", + "# given data : \n", + "#format('v',6);\n", + "Beta=90.;# unitless\n", + "IC=4.;# mA(Collector Current)\n", + "alfa=Beta/(1.+Beta);# current gain\n", + "IB=IC/Beta;# mA(Base Current)\n", + "IE=IC+IB;# mA(Emitter currenrt)\n", + "print\"Value of alfa\",alfa\n", + "print\"Base Current(micro A)\",IB*1000.\n", + "print\"Emmiter Current(mA)\",IE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of alfa 0.989010989011\n", + "Base Current(micro A) 44.4444444444\n", + "Emmiter Current(mA) 4.04444444444\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E03 : Pg 344" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_3\n", + "# given data : \n", + "alfa=0.90;# current gain\n", + "ICO=15.;# micro A(reverse saturation currenrt)\n", + "IB=0.5;# /mA(Base Current)\n", + "Beta=alfa/(1.-alfa);# unitless\n", + "IC=Beta*IB+(1.+Beta)*ICO/1000.;# mA(Collector Current)\n", + "print\"Collector Current(mA)\",IC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Collector Current(mA) 4.65\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E04 : Pg 345" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_4\n", + "# given data : \n", + "IB=20.;# /micro A(Base Current)\n", + "IC=5.;# mA(Collector Current)\n", + "Beta=IC*1000./IB;# unitless\n", + "print\"Beta=\",Beta" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Beta= 250.0\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E05 : Pg 346" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_5\n", + "# given data : \n", + "IB=50.;# /micro A(Base Current)\n", + "IC=5.;# mA(Collector Current)\n", + "IE=IC+IB/1000.;# mA\n", + "Beta=IC*1000./IB;# unitless\n", + "alfa=IC/IE;# current gain\n", + "print\"Emitter Current(mA)\",IE\n", + "print\"\\nBeta=\",Beta\n", + "print\"\\nalfa=\",alfa\n", + "print\"\\nVerify that alfa=Beta/(Beta+1)\"\n", + "print alfa==Beta/(Beta+1);\n", + "print\"\\nVerify that Beta=alfa/(1-alfa)\"\n", + "print Beta==round(alfa/(1-alfa));" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Emitter Current(mA) 5.05\n", + "\n", + "Beta= 100.0\n", + "\n", + "alfa= 0.990099009901\n", + "\n", + "Verify that alfa=Beta/(Beta+1)\n", + "True\n", + "\n", + "Verify that Beta=alfa/(1-alfa)\n", + "True\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E06 : Pg 348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_6\n", + "# given data : \n", + "IE=10.;# mA\n", + "IB=5.;# /mA(Base Current)\n", + "IC=IE-IB;# mA(Collector Current)\n", + "BetaR=IC/IB;# unitless\n", + "alfaR=IC/IE;# current gain\n", + "print \"BetaR=\",BetaR\n", + "print \"alfaR=\",alfaR\n", + "# Answer is wrong in the book." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "BetaR= 1.0\n", + "alfaR= 0.5\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E07 : Pg 348" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_7\n", + "# given data : \n", + "Beta=100.;# unitless\n", + "VBE=0.7;# V\n", + "VCC=10.;# V\n", + "# (a) VE=-0.7;# V\n", + "print\"For the circuit in fig(a)\"\n", + "VE=-0.7;# V(Constant voltage)\n", + "R1=10.;# kohm\n", + "R2=10.;# kohm\n", + "IE=(VCC+VE)/R2;# mA\n", + "IB=IE/(Beta+1.);# mA\n", + "VC=VCC-R1*1000.*(IE-IB)/1000.;# V\n", + "print\"Constant voltage fo the given transistor, VE(V)\",VE\n", + "print\"Emitter current(mA)\",IE\n", + "#format('v',5);\n", + "IB=IB*1000;# /micro A\n", + "print\"Base current(micro A)\",IB\n", + "#format('v',6);\n", + "print\"VC(V)\",VC\n", + "# (b) VE=-0.7;# V\n", + "R1=5.;# kohm\n", + "R2=5.;# kohm\n", + "VEE=-15.;# V\n", + "print\"For the circuit in fig(b)\"\n", + "VE=-0.7;# V(Constant voltage)\n", + "R1=5.;# kohm\n", + "R2=5.;# kohm\n", + "IE=(VCC+VE)/R2;# mA\n", + "IC=IE*Beta/(Beta+1.);# mA\n", + "VC=VEE+R2*IC;# V\n", + "print\"Constant voltage fo the given transistor, VE(V)\",VE\n", + "print\"Emitter current(mA)\",IE\n", + "print\"Base current(mA)\",IC\n", + "#format('v',5);\n", + "print\"VC(V)\",VC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For the circuit in fig(a)\n", + "Constant voltage fo the given transistor, VE(V) -0.7\n", + "Emitter current(mA) 0.93\n", + "Base current(micro A) 9.20792079208\n", + "VC(V) 0.792079207921\n", + "For the circuit in fig(b)\n", + "Constant voltage fo the given transistor, VE(V) -0.7\n", + "Emitter current(mA) 1.86\n", + "Base current(mA) 1.84158415842\n", + "VC(V) -5.79207920792\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E08 : Pg 350" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_8\n", + "# given data : \n", + "import math \n", + "Beta=1.+0j;#math.inf;# Current gain\n", + "VBE=0.7;# # V\n", + "VB=0;# V(For large Beta)\n", + "VE=VB-VBE;# # V\n", + "print\"(a) Value of VB(V) : \",VB\n", + "print\"(a) Value of VE(V) : \",VE\n", + "# Part (b)\n", + "R1=5.;# /kohm\n", + "R2=5.;# /kohm\n", + "VCC=10.;# /V\n", + "VEE=-15.;# /V\n", + "VE=VBE;# # V\n", + "VC=VEE+R1/R2*(VCC-VBE);# V\n", + "print\"(b) Value of VE(V) : \",VE\n", + "print\"(b) Value of VC(V) : \",VC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Value of VB(V) : 0\n", + "(a) Value of VE(V) : -0.7\n", + "(b) Value of VE(V) : 0.7\n", + "(b) Value of VC(V) : -5.7\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E09 : Pg 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_9\n", + "# given data :\n", + "VEE=5.;# # V\n", + "VCC=-5.;# # V\n", + "VE=1.;# # V\n", + "RB=20.;# kohm\n", + "RE=5.;# kohm\n", + "RC=5.;# kohm\n", + "VBE=0.7;# # V\n", + "VB=VE-VBE;# /V\n", + "IB=VB/RB;# /mA\n", + "IE=(VEE-VE)/RE;# mA\n", + "IC=IE-IB;# mA\n", + "VC=VCC+IC*RC;# V\n", + "Beta=IC/IB;# Current gain\n", + "Alfa=IC/IE;# Current gain\n", + "print\"VB(V) : \",VB\n", + "print\"IB(mA) : \",IB\n", + "print\"IE(mA) : \",IE\n", + "print\"IC(mA) : \",IC\n", + "#format('v',5);\n", + "print\"Beta : \",Beta\n", + "print\"Alfa : \",Alfa" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "VB(V) : 0.3\n", + "IB(mA) : 0.015\n", + "IE(mA) : 0.8\n", + "IC(mA) : 0.785\n", + "Beta : 52.3333333333\n", + "Alfa : 0.98125\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E10 : Pg 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_10\n", + "#clc;\n", + "#clear;\n", + "#close;\n", + "#format('v',6);\n", + "# given data :\n", + "delVB=0.4;# V\n", + "delVC=0;# V# No change\n", + "delVE=delVB;# V# Same change\n", + "print\"delVE(V) : \",delVE\n", + "print\"delVC(V) : \",delVC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "delVE(V) : 0.4\n", + "delVC(V) : 0\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E11 : Pg 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Ex_7_11\n", + "# given data :\n", + "VBE=0.7;# # V\n", + "Beta=100.;# /Current Gain\n", + "# Part (a)\n", + "VCC=6.;# # V\n", + "VEE=0;# # V\n", + "VB=2.;# # V\n", + "RE=18.;# kohm\n", + "RC=3.;# kohm\n", + "VE=VB-VBE;# V\n", + "print\"(a) Emitter Voltage(V) : \",VE\n", + "IE=1.;# /mA\n", + "IC=IE*Beta/(1+Beta);# /mA\n", + "VC=VCC-IC*RC;# V\n", + "if VC>VE:\n", + " print\"Circuit is in active mode.\"\n", + "# Part (b)\n", + "VEE=6.;# # V\n", + "VCC=0;# # V\n", + "VB=1.;# # V\n", + "RE=10.;# kohm\n", + "RC=10.;# kohm\n", + "VE=VB+VBE;# V\n", + "print\"(b) Emitter Voltage(V) : \",VE\n", + "IE=(VEE-VE)/RE;# /mA\n", + "IC=IE;# /mA(Assumed nearly equal)\n", + "VC=VCC+IC*RC;# V\n", + "if VC>VB :\n", + " print\"Circuit is in saturation mode.\"\n", + "# Part (c)\n", + "VEE=9.5;# # V\n", + "VCC=-50.;# # V\n", + "VB=-5.;# # V\n", + "RE=200.;# kohm\n", + "RC=20.;# kohm\n", + "VE=VB+VBE;# V\n", + "print\"(c) Emitter Voltage(V) : \",VE\n", + "IE=(VEE-VE)/RE;# /mA;# /mA\n", + "IC=IE*Beta/(1+Beta);# /mA\n", + "VC=VCC-IC*RC;# V\n", + "if VC>VE :\n", + " print\"Circuit is in active mode.\"\n", + "else :\n", + " print\"Circuit is in reverse active mode.\"\n", + "# Part (d)\n", + "VEE=-30.;# # V\n", + "VCC=-10.;# # V\n", + "VB=-20.;# # V\n", + "RE=6.;# kohm\n", + "RC=2.;# kohm\n", + "VE=VB-VBE;# V\n", + "print\"(d) Emitter Voltage(V) : \",VE\n", + "IE=(VEE-VE)/RE;# /mA;# /mA\n", + "IC=IE*Beta/(1.+Beta);# /mA\n", + "VC=VCC-IC*RC;# V\n", + "if VC>VE :\n", + " print\"Circuit is in active mode.\"\n", + "# Note : Printing error in part (a) in the textbook. Answer is also not accurate in the textbook for part(c)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Emitter Voltage(V) : 1.3\n", + "Circuit is in active mode.\n", + "(b) Emitter Voltage(V) : 1.7\n", + "Circuit is in saturation mode.\n", + "(c) Emitter Voltage(V) : -4.3\n", + "Circuit is in reverse active mode.\n", + "(d) Emitter Voltage(V) : -20.7\n", + "Circuit is in active mode.\n" + ] + } + ], + "prompt_number": 11 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb b/sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb new file mode 100644 index 00000000..62bae8a2 --- /dev/null +++ b/sample_notebooks/VijayaLakshmi/CHAPTER04.ipynb @@ -0,0 +1,680 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a49a8ec12fc3b73c3ede4bd700b2981c396abe3970143184cc460eca3744fac1" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER04:ANGLE MODULATION" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E03 : Pg 4.9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.9\n", + "# Example 4.3\n", + "# Given\n", + "fc=1.*10.**6.; # Hz\n", + "kf=5.;\n", + "mt=1.*10.**5.; # Hz\n", + "\n", + "# (a) mi(t) with fm\n", + "mi=(fc+(kf*mt));\n", + "print\"Max, Inst. Frequency with FM\",mi,\"Hz\"\n", + "import math \n", + "kp=3.;\n", + "# (b) mi2(t) with pm\n", + "mi2=fc+(mt*(kp/(2*math.pi)));\n", + "\n", + "print\"Max, Inst. Frequency with PM\",mi2,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Max, Inst. Frequency with FM 1500000.0 Hz\n", + "Max, Inst. Frequency with PM 1047746.48293 Hz\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E09 : Pg 4.13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.13\n", + "# Example 4.9\n", + "# Given\n", + "delf=20.*10.**3.; # hz\n", + "fm=10.*10.**3.; # Hz\n", + "\n", + "B=delf/fm;\n", + "print\"Beta: \",B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Beta: 2.0\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E13 : Pg 4.16" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.16\n", + "# Example 4.13\n", + "# Given\n", + "# x(t)=10cos((2*pi*10**8*t)+(200cos(2*pi*10**3*t)))\n", + "# on differentiating\n", + "# wi=2*pi*(1D+8)-4*pi*sin(2*pi*(1D+3)*t)\n", + "# Therefore\n", + "import math \n", + "delw=4.*math.pi*(1.*10.**5.);\n", + "wm=2.*math.pi*(1.*10.**3.);\n", + "B=delw/wm;\n", + "wb=2.*(B+1.)*wm;\n", + "fb=wb/2.*math.pi;\n", + "print\"Wb\",wb,\"rad/s\"\n", + "print\"Fb\",fb,\"Hz\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wb 2525840.49349 rad/s\n", + "Fb 3967580.96924 Hz\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E14 : Pg 4.17" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.17\n", + "# Example 4.14\n", + "# Given\n", + "delf=100.*10.**3; # Hz\n", + "fc=20.*10.**6.; # Hz\n", + "\n", + "# As B=delf/fm;\n", + "# (a) fm1=1*10.**3hz\n", + "print'Part a'\n", + "fm1=1.*10.**3.; # Hz\n", + "B1=delf/fm1;\n", + "print'Modulation Index',B1\n", + "fb1=2.*delf;\n", + "print'Bandwidth',fb1,'Hz'\n", + "# (b) fm2=100*10.**3hz\n", + "print'\\nPart b'\n", + "fm2=100.*10.**3.; # Hz\n", + "B2=delf/fm2;\n", + "print'Modulation Index',B2\n", + "fb2=2.*(B2+1.)*fm2;\n", + "print'Bandwidth',fb2,'Hz'\n", + "# (c) fm3=500*10.**3hz\n", + "print'\\nPart c'\n", + "fm3=500.*10.**3.; # Hz\n", + "B3=delf/fm3;\n", + "print'Modulation Index',B3\n", + "fb3=2.*fm3;\n", + "print'Bandwidth',fb3,'Hz'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part a\n", + "Modulation Index 100.0\n", + "Bandwidth 200000.0 Hz\n", + "\n", + "Part b\n", + "Modulation Index 1.0\n", + "Bandwidth 400000.0 Hz\n", + "\n", + "Part c\n", + "Modulation Index 0.2\n", + "Bandwidth 1000000.0 Hz\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E15 : Pg 4.17" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.17\n", + "# Example 4.15\n", + "# Given\n", + "# x(t)=10cos(wct+3sinwmt)\n", + "# Comparing with standard equation\n", + "B=3.;\n", + "fm=1.*10.**3.; # hz\n", + "fb=2.*(B+1.)*fm;\n", + "\n", + "# (a)fm is doubled\n", + "fma=2.*fm;\n", + "fba=2.*(B+1.)*fma;\n", + "print\"fb with 2fm: \",fba\n", + "\n", + "# (b)fm is one halved\n", + "fmb=fm/2.;\n", + "fbb=2.*(B+1.)*fmb;\n", + "print\"fb with 0.5fm: \",fbb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fb with 2fm: 16000.0\n", + "fb with 0.5fm: 4000.0\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E16 : Pg 4.18" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.18\n", + "# Example 4.16\n", + "# Given\n", + "# x(t)=10cos(wct+3sinwmt)\n", + "# Comparing with standard equation of fm\n", + "B=3.;\n", + "fm=1.*10.**3.; # hz\n", + "fb=2.*(B+1.)*fm;\n", + "\n", + "# B is inversaly proportional to fm\n", + "\n", + "# (a)fm is doubled\n", + "Ba=B/2.;\n", + "fma=2.*fm;\n", + "fba=2.*(Ba+1.)*fma;\n", + "print\"fb with 2fm: \",fba\n", + "\n", + "\n", + "\n", + "# (b)fm is one halved\n", + "Bb=2.*B;\n", + "fmb=fm/2.;\n", + "fbb=2.*(Bb+1.)*fmb;\n", + "print\"fb with 0.5fm: \",fbb" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fb with 2fm: 10000.0\n", + "fb with 0.5fm: 7000.0\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E17 : Pg 4.18" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.18\n", + "# Example 4.17\n", + "\n", + "# Given\n", + "fm=2.*10.**3.; # Hz\n", + "delf=5.*10.**3.; # Hz\n", + "\n", + "# (a) Bandwidth of modulated signal\n", + "B=delf/fm;\n", + "\n", + "fb=2.*(B+1.)*fm;\n", + "print'Bandwidth',fb,'Hz'\n", + "\n", + "# (b)Max. frequency deviation and Bandwidth of new signal\n", + "# Given\n", + "fm1=fm-(1.*10.**3.);\n", + "delf1=3.*delf;\n", + "\n", + "B1=delf1/fm1;\n", + "\n", + "fd=B1*fm1;\n", + "print'Maximum frequency deviation',fd,'Hz'\n", + "\n", + "fb1=2.*(B1+1.)*fm1;\n", + "print'Bandwidth',fb1,'Hz'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Bandwidth 14000.0 Hz\n", + "Maximum frequency deviation 15000.0 Hz\n", + "Bandwidth 32000.0 Hz\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E18 : Pg 4.19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.19\n", + "# Example 4.18\n", + "# Given\n", + "delf=75.*10.**3.; # Hz\n", + "fM=15.*10.**3.; # Hz\n", + "\n", + "D=delf/fM;\n", + "# Given formula fb=2(*10.**2)*fM\n", + "fb1=2.*10.**2.*fM;\n", + "print'BW uing formula',fb1,'Hz'\n", + "\n", + "# Carsons Rule\n", + "fb2=2.*10.**1.*fM;\n", + "print'BW uing Carsons Rule',fb2,'Hz'\n", + "\n", + "# High quality Fm radios require minimum 200kHz\n", + "# Therefore, carsons rule underestimates bandwidth" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "BW uing formula 3000000.0 Hz\n", + "BW uing Carsons Rule 300000.0 Hz\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E19 : Pg 4.19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.19\n", + "# Example 4.19\n", + "# Given\n", + "fm1=50.; # Hz\n", + "fm2=15.*10.**3.; # Hz\n", + "\n", + "delf=75.*10.**3.; # Hz\n", + "\n", + "# As B=delf/fm\n", + "Bmin=delf/fm2;\n", + "Bmax=delf/fm1;\n", + "\n", + "# Let B1=0.5\n", + "B1=0.5;\n", + "n=(Bmax/B1);\n", + "print'Multiplication factor',n\n", + "\n", + "delf1=(delf/n);\n", + "print'Max allowed frequency deviation',delf1,'Hz'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Multiplication factor 3000.0\n", + "Max allowed frequency deviation 25.0 Hz\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E20 : Pg 4.20" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.20\n", + "# Example 4.20\n", + "# Given\n", + "f1=2.*10.**5.; # Hz\n", + "fLO=10.8*10.**6.; # Hz\n", + "delf1=25.; # Hz\n", + "n1=64.;\n", + "n2=48.;\n", + "\n", + "delf=(delf1*n1*n2);\n", + "print'Maximum frequency deviation',delf,'Hz'\n", + "\n", + "f2=n1*f1;\n", + "\n", + "f3a=f2+fLO;\n", + "f3b=f2-fLO;\n", + "\n", + "# For f3a\n", + "fca=n2*f3a;\n", + "print'Carrier frequency 1',fca,'Hz'\n", + "\n", + "# For f3b\n", + "fcb=n2*f3b;\n", + "print'Carrier frequency 2',fcb,'Hz'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum frequency deviation 76800.0 Hz\n", + "Carrier frequency 1 1132800000.0 Hz\n", + "Carrier frequency 2 96000000.0 Hz\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E21 : Pg 4.20" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.20\n", + "# Example 4.21\n", + "# Given\n", + "delf=20.*10.**3.; # Hz\n", + "fc=200.*10.**3.; # Hz\n", + "of=96.*10.**6.; # hz\n", + "# delf=n1*n2 and as only doublers are used, n1*n2 has to be power of 2\n", + "# By trail and error, we find\n", + "n1=64.;\n", + "n2=32.;\n", + "# Output of first Multiplier\n", + "o1=n1*fc;\n", + "print'Output of first multiplier: ',o1,'Hz'\n", + "i2=of/n2;\n", + "flo=o1-i2;\n", + "print'fLO',flo,'Hz'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Output of first multiplier: 12800000.0 Hz\n", + "fLO 9800000.0 Hz\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E22 : Pg 4.20" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.20\n", + "# Example 4.22\n", + "# Given\n", + "B=0.2; \n", + "f1=200.*10.**3.; # Hz\n", + "fml=50.; # Hz\n", + "fmh=15.*10.**3.; # Hz\n", + "delf=75.*10.**3.; # hz\n", + "fc=108.*10.**6.; # Hz\n", + "\n", + "delf1=B*fml;\n", + "n1n2=delf/delf1;\n", + "\n", + "# Let n2=150\n", + "n2=150.;\n", + "flo=((delf*f1)-fc)/n2;\n", + "print'fLO',flo,'Hz'\n", + "\n", + "n1=n1n2/n2;\n", + "print\"n1 with n2=150:\",n1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fLO 99280000.0 Hz\n", + "n1 with n2=150: 50.0\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E23 : Pg 4.21" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.21\n", + "# Example 4.23\n", + "# Given,\n", + "\n", + "delfd1=50.; # Hz\n", + "f1=120.; # Hz\n", + "\n", + "delfd2=20000.; # Hz\n", + "f2=240.; # Hz\n", + "# (a)PM\n", + "delf1=(f2/f1)*delfd1;\n", + "n1=delfd2/delf1;\n", + "print'Frequency multiplication factor in PM',n1\n", + "\n", + "# (b)FM\n", + "n2=delfd2/delfd1;\n", + "print'Frequency multiplication factor in FM',n2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Frequency multiplication factor in PM 200.0\n", + "Frequency multiplication factor in FM 400.0\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example E29 : Pg 4.25" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Page Number: 4.25\n", + "# Example 4.29\n", + "# Given,\n", + "f1=108.; # MHz\n", + "f2=157.; # MHz\n", + "\n", + "# (a) Image frequency overlaps RF band\n", + "fIF=12.; # MHz\n", + "\n", + "fL01=f1-fIF;\n", + "print'fL01',fL01,'MHz'\n", + "fim1=fL01-fIF;\n", + "print'fim1',fim1,'MHz'\n", + "\n", + "fL02=f2-fIF;\n", + "print'fL02',fL02,'MHz'\n", + "fim2=fL02-fIF;\n", + "print'fim2',fim2,'MHz'\n", + "\n", + "# Clearly image and RF band overlap" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "fL01 96.0 MHz\n", + "fim1 84.0 MHz\n", + "fL02 145.0 MHz\n", + "fim2 133.0 MHz\n" + ] + } + ], + "prompt_number": 15 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit