From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- sample_notebooks/srinivasparupalli/CHAPTER_1.ipynb | 347 --------------------- sample_notebooks/srinivasparupalli/CHAPTER_3.ipynb | 310 ------------------ .../CHAPTER_1.ipynb | 347 +++++++++++++++++++++ .../CHAPTER_3.ipynb | 310 ++++++++++++++++++ 4 files changed, 657 insertions(+), 657 deletions(-) delete mode 100755 sample_notebooks/srinivasparupalli/CHAPTER_1.ipynb delete mode 100755 sample_notebooks/srinivasparupalli/CHAPTER_3.ipynb create mode 100755 sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_1.ipynb create mode 100755 sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_3.ipynb (limited to 'sample_notebooks/srinivasparupalli') diff --git a/sample_notebooks/srinivasparupalli/CHAPTER_1.ipynb b/sample_notebooks/srinivasparupalli/CHAPTER_1.ipynb deleted file mode 100755 index 1f882de6..00000000 --- a/sample_notebooks/srinivasparupalli/CHAPTER_1.ipynb +++ /dev/null @@ -1,347 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:80f88a972947f3f07c0690a368a00c796fad1cccb9df59741b4a8c03cd1e434e" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "CHAPTER 1- FUNDAMENTAL CONCEPTS" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.1- PG NO:4" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.1#\n", - "#clears the screen#\n", - "#clears the existing variables#\n", - "print('the locker door (Y) can be opened using one key (A) which is with you and the other key (B) which is with the bank executive. When both the keys are used, the locker door opens, i.e. the locker door can be opened (Y=1) only when both the keys are applied(A=B=1).Thus, this can be expressed as an AND operation')\n", - "print('Y=A*B')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the locker door (Y) can be opened using one key (A) which is with you and the other key (B) which is with the bank executive. When both the keys are used, the locker door opens, i.e. the locker door can be opened (Y=1) only when both the keys are applied(A=B=1).Thus, this can be expressed as an AND operation\n", - "Y=A*B\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.3 - PG NO.6" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.3#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('Let the temperature and pressure be converted into electrical signals and T=1 if temperature exceeds the specified limit and P=1 if pressure exceeds the specified limit. If T=1 or P=1 or both T and P are 1 then the alarm is required to be activated, i.e., the signal applied to the alarm Y=1. This operation can be expressed as an or operation.')\n", - "print('Y=T or P')\n", - "print('Y=T+P')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Let the temperature and pressure be converted into electrical signals and T=1 if temperature exceeds the specified limit and P=1 if pressure exceeds the specified limit. If T=1 or P=1 or both T and P are 1 then the alarm is required to be activated, i.e., the signal applied to the alarm Y=1. This operation can be expressed as an or operation.\n", - "Y=T or P\n", - "Y=T+P\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.7.a - PG NO:10" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.7(a)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when one of the logic input of 2-input NAND gate is 0, then irrespective of the other input, the output comes out to be 1. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 0')\n", - "print('Y=1')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when one of the logic input of 2-input NAND gate is 0, then irrespective of the other input, the output comes out to be 1. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 0\n", - "Y=1\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.7.b - PG NO:11" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.7(b)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when one of the logic input of 2-input NAND gate is 1, then when A=1, Y=0 and if A=0, Y=1')\n", - "print('Y= ~A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when one of the logic input of 2-input NAND gate is 1, then when A=1, Y=0 and if A=0, Y=1\n", - "Y= ~A\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.9.a - PG NO:12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.9(a)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when one of the logic input of 2-input NOR gate is 0, then when A=1, Y=0 and if A=0, Y=1')\n", - "print('Y= ~A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when one of the logic input of 2-input NOR gate is 0, then when A=1, Y=0 and if A=0, Y=1\n", - "Y= ~A\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.9.b - PG NO:12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.9(b)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when one of the logic input of 2-input NOR gate is 1, then irrespective of the other input, the output comes out to be 0. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 1')\n", - "print('Y=0')\n", - "print('here the output of Y is 0 irrespective of input of A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when one of the logic input of 2-input NOR gate is 1, then irrespective of the other input, the output comes out to be 0. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 1\n", - "Y=0\n", - "here the output of Y is 0 irrespective of input of A\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.11.a - PG NO:14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.11(a)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('If we connect one input of EX-OR gate to 0 permanently, we observe that Y=A*0+A*0')\n", - "print('thus, Y=A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "If we connect one input of EX-OR gate to 0 permanently, we observe that Y=A*0+A*0\n", - "thus, Y=A\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.11.b- PG NO:14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.11(b)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('If we connect one input of EX-OR gate to 1 permanently, we observe that Y=A*1+A*1')\n", - "print('thus, Y= ~A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "If we connect one input of EX-OR gate to 1 permanently, we observe that Y=A*1+A*1\n", - "thus, Y= ~A\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.13.a - PG NO:15" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.13(a)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('If we connect one input of EX-NOR gate to 0 permanently, we observe that Y=A*0+A*0')\n", - "print('thus, Y= ~A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "If we connect one input of EX-NOR gate to 0 permanently, we observe that Y=A*0+A*0\n", - "thus, Y= ~A\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 1.13.b- PG NO:15" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#example 1.13(b)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('If we connect one input of EX-NOR gate to 1 permanently, we observe that Y=A*1+A*1')\n", - "print('thus, Y=A')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "If we connect one input of EX-NOR gate to 1 permanently, we observe that Y=A*1+A*1\n", - "thus, Y=A\n" - ] - } - ], - "prompt_number": 10 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/sample_notebooks/srinivasparupalli/CHAPTER_3.ipynb b/sample_notebooks/srinivasparupalli/CHAPTER_3.ipynb deleted file mode 100755 index b5416e8b..00000000 --- a/sample_notebooks/srinivasparupalli/CHAPTER_3.ipynb +++ /dev/null @@ -1,310 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:f24ed387c9c220910a22c3b53359904a6b96b4e1c0307b247f6eff7ab0a91f27" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "CHAPTER 3 - Semiconductor devices switching mode operation" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.3 -PG NO.88" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no.88\n", - "#example 3.3#\n", - "#clears the screen#\n", - "#clears already existing varibales#\n", - "a=10.#\n", - "#input voltage (in volts)#\n", - "b=.7#\n", - "#transistor voltage(saturation voltage)#\n", - "c=5.#\n", - "#resistor b/w input voltage and the transistor#\n", - "d=10.#\n", - "#input voltage from collector side#\n", - "e=0.1#\n", - "#transistor voltage(saturation voltage from collector side)#\n", - "f=2.#\n", - "#resistor in kilo-ohm#\n", - "g=30.#\n", - "h=-10.#\n", - "#input voltage from emitter side#\n", - "I=(a-b)/c#\n", - "#base current of transistor from given figure#\n", - "print('the base current of given circuit is (in mA):')\n", - "print(I)\n", - "#base current is in mA#\n", - "K=(d-e)/f\n", - "#collector current of transistor from given figure#\n", - "print('the collector current of given circuit is (in mA):')\n", - "print(round(K))\n", - "#collector current in mA(saturation current)#\n", - "L=K/g\n", - "print('base current required for the transistor to be in saturation is (in mA):')\n", - "print(L)\n", - "#current in mA#\n", - "M=(h-b)/c\n", - "print('the base current is (in mA):')\n", - "print(M)\n", - "#base current in mA#" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the base current of given circuit is (in mA):\n", - "1.86\n", - "the collector current of given circuit is (in mA):\n", - "5.0\n", - "base current required for the transistor to be in saturation is (in mA):\n", - "0.165\n", - "the base current is (in mA):\n", - "-2.14\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.4.a- PG NO.95" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no. 95\n", - "#example 3.4(a)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when the input voltage V(i)= -5V, the JFET is opening at point A, where I(D)=0 and V(0)=V(DD)=20V')\n", - "print('this corresponds to the switch in OFF state')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when the input voltage V(i)= -5V, the JFET is opening at point A, where I(D)=0 and V(0)=V(DD)=20V\n", - "this corresponds to the switch in OFF state\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.4.b- PG NO. 95" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no. 95\n", - "#example 3.4(b)#\n", - "#clears the screen#\n", - "#clears the command window#\n", - "print('when V(i)=0V, the JFET is operating at point B, where I(D)=3.8mA and V(0)=1V')\n", - "print('this corresponds to the switch in ON state')\n", - "#the answers have been taken directly from the figure#" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when V(i)=0V, the JFET is operating at point B, where I(D)=3.8mA and V(0)=1V\n", - "this corresponds to the switch in ON state\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.5.a - PG NO.96" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no. 96\n", - "#example 3.5(a)#\n", - "#clears the window#\n", - "#clears already existing variables#\n", - "print('when V(i)=0, the transistor is cutoff because the voltage between the gate and the source is below the threshold voltage. Correspondingly the output voltage V(0)=5V(point (N) as in figure)')\n", - "#answer according to the cuts of load line#" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when V(i)=0, the transistor is cutoff because the voltage between the gate and the source is below the threshold voltage. Correspondingly the output voltage V(0)=5V(point (N) as in figure)\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.5.b -PG NO.96" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page 96\n", - "#example 3.5(b)#\n", - "#clears the window#\n", - "#clears already existing variables#\n", - "print('when V(i)=5V, the transistor is operating at point M and V(0)=0')\n", - "print('this corresponds to ON state!')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when V(i)=5V, the transistor is operating at point M and V(0)=0\n", - "this corresponds to ON state!\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.7.a - PG NO. 97" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no. 97\n", - "#example 3.7(a)#\n", - "#clears the screen#\n", - "#clears existing variables#\n", - "print('when V(i)=0, the transistor T(1) is operating at point B')\n", - "t=5.#\n", - "#input voltage as given in question#\n", - "x=0.#\n", - "V=t-x#\n", - "#output voltage in volts#\n", - "print('here V(0)(in volts)=')\n", - "print(V)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when V(i)=0, the transistor T(1) is operating at point B\n", - "here V(0)(in volts)=\n", - "5.0\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "EXAMPLE 3.7.b - PG NO. 97" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#page no.97\n", - "#example 3.7(b)#\n", - "#clears the screen#\n", - "#clears already existing variables#\n", - "print('when V(i)=5V, the transistor T(1) is operating at point C')\n", - "V=0#\n", - "print('output voltage in volts=')\n", - "print(V)\n", - "#all the outcomes are as per the diagram#" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "when V(i)=5V, the transistor T(1) is operating at point C\n", - "output voltage in volts=\n", - "0\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_1.ipynb b/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_1.ipynb new file mode 100755 index 00000000..1f882de6 --- /dev/null +++ b/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_1.ipynb @@ -0,0 +1,347 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:80f88a972947f3f07c0690a368a00c796fad1cccb9df59741b4a8c03cd1e434e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER 1- FUNDAMENTAL CONCEPTS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.1- PG NO:4" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.1#\n", + "#clears the screen#\n", + "#clears the existing variables#\n", + "print('the locker door (Y) can be opened using one key (A) which is with you and the other key (B) which is with the bank executive. When both the keys are used, the locker door opens, i.e. the locker door can be opened (Y=1) only when both the keys are applied(A=B=1).Thus, this can be expressed as an AND operation')\n", + "print('Y=A*B')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the locker door (Y) can be opened using one key (A) which is with you and the other key (B) which is with the bank executive. When both the keys are used, the locker door opens, i.e. the locker door can be opened (Y=1) only when both the keys are applied(A=B=1).Thus, this can be expressed as an AND operation\n", + "Y=A*B\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.3 - PG NO.6" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.3#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('Let the temperature and pressure be converted into electrical signals and T=1 if temperature exceeds the specified limit and P=1 if pressure exceeds the specified limit. If T=1 or P=1 or both T and P are 1 then the alarm is required to be activated, i.e., the signal applied to the alarm Y=1. This operation can be expressed as an or operation.')\n", + "print('Y=T or P')\n", + "print('Y=T+P')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Let the temperature and pressure be converted into electrical signals and T=1 if temperature exceeds the specified limit and P=1 if pressure exceeds the specified limit. If T=1 or P=1 or both T and P are 1 then the alarm is required to be activated, i.e., the signal applied to the alarm Y=1. This operation can be expressed as an or operation.\n", + "Y=T or P\n", + "Y=T+P\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.7.a - PG NO:10" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.7(a)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when one of the logic input of 2-input NAND gate is 0, then irrespective of the other input, the output comes out to be 1. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 0')\n", + "print('Y=1')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when one of the logic input of 2-input NAND gate is 0, then irrespective of the other input, the output comes out to be 1. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 0\n", + "Y=1\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.7.b - PG NO:11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.7(b)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when one of the logic input of 2-input NAND gate is 1, then when A=1, Y=0 and if A=0, Y=1')\n", + "print('Y= ~A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when one of the logic input of 2-input NAND gate is 1, then when A=1, Y=0 and if A=0, Y=1\n", + "Y= ~A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.9.a - PG NO:12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.9(a)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when one of the logic input of 2-input NOR gate is 0, then when A=1, Y=0 and if A=0, Y=1')\n", + "print('Y= ~A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when one of the logic input of 2-input NOR gate is 0, then when A=1, Y=0 and if A=0, Y=1\n", + "Y= ~A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.9.b - PG NO:12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.9(b)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when one of the logic input of 2-input NOR gate is 1, then irrespective of the other input, the output comes out to be 0. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 1')\n", + "print('Y=0')\n", + "print('here the output of Y is 0 irrespective of input of A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when one of the logic input of 2-input NOR gate is 1, then irrespective of the other input, the output comes out to be 0. In fact, a NAND gate is disabled or inhibited if one of its inputs is connected to logic 1\n", + "Y=0\n", + "here the output of Y is 0 irrespective of input of A\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.11.a - PG NO:14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.11(a)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('If we connect one input of EX-OR gate to 0 permanently, we observe that Y=A*0+A*0')\n", + "print('thus, Y=A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "If we connect one input of EX-OR gate to 0 permanently, we observe that Y=A*0+A*0\n", + "thus, Y=A\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.11.b- PG NO:14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.11(b)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('If we connect one input of EX-OR gate to 1 permanently, we observe that Y=A*1+A*1')\n", + "print('thus, Y= ~A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "If we connect one input of EX-OR gate to 1 permanently, we observe that Y=A*1+A*1\n", + "thus, Y= ~A\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.13.a - PG NO:15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.13(a)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('If we connect one input of EX-NOR gate to 0 permanently, we observe that Y=A*0+A*0')\n", + "print('thus, Y= ~A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "If we connect one input of EX-NOR gate to 0 permanently, we observe that Y=A*0+A*0\n", + "thus, Y= ~A\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 1.13.b- PG NO:15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1.13(b)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('If we connect one input of EX-NOR gate to 1 permanently, we observe that Y=A*1+A*1')\n", + "print('thus, Y=A')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "If we connect one input of EX-NOR gate to 1 permanently, we observe that Y=A*1+A*1\n", + "thus, Y=A\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_3.ipynb b/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_3.ipynb new file mode 100755 index 00000000..b5416e8b --- /dev/null +++ b/sample_notebooks/srinivasparupalli/srinivasparupalli_version_backup/CHAPTER_3.ipynb @@ -0,0 +1,310 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:f24ed387c9c220910a22c3b53359904a6b96b4e1c0307b247f6eff7ab0a91f27" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "CHAPTER 3 - Semiconductor devices switching mode operation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.3 -PG NO.88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no.88\n", + "#example 3.3#\n", + "#clears the screen#\n", + "#clears already existing varibales#\n", + "a=10.#\n", + "#input voltage (in volts)#\n", + "b=.7#\n", + "#transistor voltage(saturation voltage)#\n", + "c=5.#\n", + "#resistor b/w input voltage and the transistor#\n", + "d=10.#\n", + "#input voltage from collector side#\n", + "e=0.1#\n", + "#transistor voltage(saturation voltage from collector side)#\n", + "f=2.#\n", + "#resistor in kilo-ohm#\n", + "g=30.#\n", + "h=-10.#\n", + "#input voltage from emitter side#\n", + "I=(a-b)/c#\n", + "#base current of transistor from given figure#\n", + "print('the base current of given circuit is (in mA):')\n", + "print(I)\n", + "#base current is in mA#\n", + "K=(d-e)/f\n", + "#collector current of transistor from given figure#\n", + "print('the collector current of given circuit is (in mA):')\n", + "print(round(K))\n", + "#collector current in mA(saturation current)#\n", + "L=K/g\n", + "print('base current required for the transistor to be in saturation is (in mA):')\n", + "print(L)\n", + "#current in mA#\n", + "M=(h-b)/c\n", + "print('the base current is (in mA):')\n", + "print(M)\n", + "#base current in mA#" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the base current of given circuit is (in mA):\n", + "1.86\n", + "the collector current of given circuit is (in mA):\n", + "5.0\n", + "base current required for the transistor to be in saturation is (in mA):\n", + "0.165\n", + "the base current is (in mA):\n", + "-2.14\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.4.a- PG NO.95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no. 95\n", + "#example 3.4(a)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when the input voltage V(i)= -5V, the JFET is opening at point A, where I(D)=0 and V(0)=V(DD)=20V')\n", + "print('this corresponds to the switch in OFF state')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when the input voltage V(i)= -5V, the JFET is opening at point A, where I(D)=0 and V(0)=V(DD)=20V\n", + "this corresponds to the switch in OFF state\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.4.b- PG NO. 95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no. 95\n", + "#example 3.4(b)#\n", + "#clears the screen#\n", + "#clears the command window#\n", + "print('when V(i)=0V, the JFET is operating at point B, where I(D)=3.8mA and V(0)=1V')\n", + "print('this corresponds to the switch in ON state')\n", + "#the answers have been taken directly from the figure#" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when V(i)=0V, the JFET is operating at point B, where I(D)=3.8mA and V(0)=1V\n", + "this corresponds to the switch in ON state\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.5.a - PG NO.96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no. 96\n", + "#example 3.5(a)#\n", + "#clears the window#\n", + "#clears already existing variables#\n", + "print('when V(i)=0, the transistor is cutoff because the voltage between the gate and the source is below the threshold voltage. Correspondingly the output voltage V(0)=5V(point (N) as in figure)')\n", + "#answer according to the cuts of load line#" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when V(i)=0, the transistor is cutoff because the voltage between the gate and the source is below the threshold voltage. Correspondingly the output voltage V(0)=5V(point (N) as in figure)\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.5.b -PG NO.96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page 96\n", + "#example 3.5(b)#\n", + "#clears the window#\n", + "#clears already existing variables#\n", + "print('when V(i)=5V, the transistor is operating at point M and V(0)=0')\n", + "print('this corresponds to ON state!')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when V(i)=5V, the transistor is operating at point M and V(0)=0\n", + "this corresponds to ON state!\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.7.a - PG NO. 97" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no. 97\n", + "#example 3.7(a)#\n", + "#clears the screen#\n", + "#clears existing variables#\n", + "print('when V(i)=0, the transistor T(1) is operating at point B')\n", + "t=5.#\n", + "#input voltage as given in question#\n", + "x=0.#\n", + "V=t-x#\n", + "#output voltage in volts#\n", + "print('here V(0)(in volts)=')\n", + "print(V)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when V(i)=0, the transistor T(1) is operating at point B\n", + "here V(0)(in volts)=\n", + "5.0\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "EXAMPLE 3.7.b - PG NO. 97" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#page no.97\n", + "#example 3.7(b)#\n", + "#clears the screen#\n", + "#clears already existing variables#\n", + "print('when V(i)=5V, the transistor T(1) is operating at point C')\n", + "V=0#\n", + "print('output voltage in volts=')\n", + "print(V)\n", + "#all the outcomes are as per the diagram#" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "when V(i)=5V, the transistor T(1) is operating at point C\n", + "output voltage in volts=\n", + "0\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit