From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- sample_notebooks/nishumittal/chapter1.ipynb | 165 ----- sample_notebooks/nishumittal/chapter2.ipynb | 710 --------------------- .../nishumittal_version_backup/chapter1.ipynb | 165 +++++ .../nishumittal_version_backup/chapter2.ipynb | 710 +++++++++++++++++++++ 4 files changed, 875 insertions(+), 875 deletions(-) delete mode 100755 sample_notebooks/nishumittal/chapter1.ipynb delete mode 100755 sample_notebooks/nishumittal/chapter2.ipynb create mode 100755 sample_notebooks/nishumittal/nishumittal_version_backup/chapter1.ipynb create mode 100755 sample_notebooks/nishumittal/nishumittal_version_backup/chapter2.ipynb (limited to 'sample_notebooks/nishumittal') diff --git a/sample_notebooks/nishumittal/chapter1.ipynb b/sample_notebooks/nishumittal/chapter1.ipynb deleted file mode 100755 index 56991b68..00000000 --- a/sample_notebooks/nishumittal/chapter1.ipynb +++ /dev/null @@ -1,165 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:b803a1650997e1a91a43f6f6211bc977cbde8d0a8e079033f5645dae7b99d4ba" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 1 Introduction " - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1 Page no 9" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "Rs=50 #ohm\n", - "\n", - "#Calculation\n", - "Rl=100*Rs\n", - "\n", - "#Result\n", - "print\"Load resistance is\",Rl*10**-3,\"ohm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Load resistance is 5.0 ohm\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.2 Page no 12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "Rs=10*10**3 #Kohm\n", - "\n", - "#Calculation\n", - "Rl=0.01*Rs\n", - "\n", - "#Result\n", - "print\"Value of load resistance is\",Rl,\"Kohm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Value of load resistance is 100.0 Kohm\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.4 Page no 14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "R1=3 #ohm\n", - "R2=6\n", - "R3=4\n", - "\n", - "#Calculation\n", - "Vth=24\n", - "Rth=R3+((R1*R2)/(R1+R2))\n", - "\n", - "#Result\n", - "print\"Thevenin Voltage is\",Vth,\"V\"\n", - "print\"Thevenin resistance is\",Rth,\"Kohm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Thevenin Voltage is 24 V\n", - "Thevenin resistance is 6 Kohm\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.6 Page no 19" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "V=10 #V\n", - "R=2.0 #Kohm\n", - "\n", - "#Calculation\n", - "I=V/R\n", - "\n", - "#Result\n", - "print\"Nortan current is\", I,\"mA\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Nortan current is 5.0 mA\n" - ] - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/sample_notebooks/nishumittal/chapter2.ipynb b/sample_notebooks/nishumittal/chapter2.ipynb deleted file mode 100755 index 3d83df64..00000000 --- a/sample_notebooks/nishumittal/chapter2.ipynb +++ /dev/null @@ -1,710 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:46bc70330d4213802afb03e252b2ad32eb9319ed4cc2a32fe2c16df97a5f1978" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2 Particle nature of Radiation; The origin of Quantum theory" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2 Page no-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "E=40 #W\n", - "lembda=6000*10**-10 #m\n", - "h=6.63*10**-34 #Js\n", - "c=3*10**8 #m/s\n", - "\n", - "#Calculation\n", - "n=(E*lembda)/(h*c)\n", - "\n", - "#Result\n", - "print\"No. of photons emitted per second are given by \",round(n*10**-19,2),\"*10**19\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "No. of photons emitted per second are given by 12.07 *10**19\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.3 Page no-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "a=3.2 #ev\n", - "energy=3.8 #ev\n", - "e=1.6*10**-19\n", - "\n", - "#Calculation\n", - "c=energy-a\n", - "Energy=c*e\n", - "\n", - "#Result\n", - "print\"Kinetic energy of the photoelectron is given by \",Energy,\"Joule\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Kinetic energy of the photoelectron is given by 9.6e-20 Joule\n" - ] - } - ], - "prompt_number": 31 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.4 Page no-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "W=3.45 #ev\n", - "h=6.63*10**-34 #Js\n", - "c=3*10**8 #m/s\n", - "e=1.6*10**-19\n", - "\n", - "#Calculation\n", - "lembda=(h*c)/(W*e)\n", - "\n", - "#Result\n", - "print\"Maximum wavelength of photon is \",round(lembda*10**10,0),\"A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Maximum wavelength of photon is 3603.0 A\n" - ] - } - ], - "prompt_number": 193 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.5 Page no-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "W=3 #ev\n", - "h=6.63*10**-34\n", - "e=1.6*10**-19\n", - "lembda=3.0*10**-7 #m\n", - "c=3*10**8 #m/s\n", - "\n", - "#Calculation\n", - "v0=(W*e)/h\n", - "v=c/lembda\n", - "E=h*(v-v0)\n", - "E1=(h*(v-v0))/(1.6*10**-19)\n", - "V0=E/e\n", - "\n", - "#Result\n", - "print\"(a) Threshold frequency \",round(v0*10**-15,2),\"*10**15 HZ\"\n", - "print\"(b) Maximum energy of photoelectron \",round(E1,2),\"eV\"\n", - "print\"(c) Stopping potential \",round(V0,2),\"V\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Threshold frequency 0.72 *10**15 HZ\n", - "(b) Maximum energy of photoelectron 1.14 eV\n", - "(c) Stopping potential 1.14 V\n" - ] - } - ], - "prompt_number": 197 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.6 Page no-13" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "v0=6*10**14 #s**-1\n", - "h=6.63*10**-34\n", - "e=1.6*10**-19\n", - "V0=3\n", - "\n", - "#Calculaton\n", - "W=h*v0\n", - "W0=(h*v0)/e\n", - "V=(e*V0+h*v0)/h\n", - "\n", - "#Result \n", - "print\"work function is given by \",round(W0,3),\"ev\"\n", - "print\"frequency is given by \",round(V*10**-15,2),\"*10**15 s-1\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "work function is given by 2.486 ev\n", - "frequency is given by 1.32 *10**15 s-1\n" - ] - } - ], - "prompt_number": 88 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.7 Page no 13" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "lembda=6800.0*10**-10 #m\n", - "h=6.6*10**-34\n", - "W=2.3 #ev\n", - "c=3*10**8 #m/s\n", - "\n", - "#Calculation\n", - "E=((h*c)/lembda)/1.6*10**-19\n", - "\n", - "#Result\n", - "print\"Energy is \",round(E*10**38,2),\"ev\"\n", - "print\"since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Energy is 1.82 ev\n", - "since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\n" - ] - } - ], - "prompt_number": 200 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.8 Page no 14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "lembda=3500*10**-10 #m\n", - "h=6.6*10**-34\n", - "c=3*10**8 #m/s\n", - "\n", - "#calculation \n", - "E=((h*c)/lembda)/1.6*10**-19\n", - "\n", - "#Result\n", - "print\"Energy is \" ,round(E*10**38,2),\"ev\"\n", - "print\"1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Energy is 3.54 ev\n", - "1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\n" - ] - } - ], - "prompt_number": 201 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.9 Page no 14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "lembda=6.2*10**-6\n", - "W=0.1 #ev\n", - "h=6.6*10**-34 #Js\n", - "c=3*10**8 #m/s\n", - "e=1.6*10**-19\n", - "\n", - "#Calculation\n", - "E=((h*c)/(lembda*e))-W\n", - "\n", - "#Result\n", - "print\"Maximum kinetic energy of photoelectron \",round(E,1),\"ev\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Maximum kinetic energy of photoelectron 0.1 ev\n" - ] - } - ], - "prompt_number": 112 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.10 Page no 14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "e=1.60*10**-19 #C\n", - "slope=4.12*10**-15 #Vs\n", - "\n", - "#Calculation\n", - "h=slope*e\n", - "\n", - "#Result\n", - "print\"Value of plank's constant \",h,\"Js\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Value of plank's constant 6.592e-34 Js\n" - ] - } - ], - "prompt_number": 114 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.11 Page no 15" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "W=2.26*1.6*10**-19 #ev\n", - "v=10**6 #m/s\n", - "m=9*10**-31\n", - "\n", - "#Calculation\n", - "V=((1/2.0)*m*v**2+W)/h\n", - "\n", - "#Result\n", - "print\"frequency of incident radiation \",round(V*10**-15,2),\"*10**15 HZ\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "frequency of incident radiation 1.23 *10**15 HZ\n" - ] - } - ], - "prompt_number": 118 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.12 Page no 15" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "V1=.82 #volts\n", - "V2=1.85 #volts\n", - "lembda1=4.0*10**-7 #m\n", - "lembda2=3.0*10**-7\n", - "e=1.6*10**-19\n", - "c=3.0*10**8 #m/s\n", - "\n", - "#Calculation\n", - "lembda=(1/lembda2)-(1/lembda1)\n", - "h=(e*(V2-V1))/(c*lembda)\n", - "\n", - "#Result\n", - "print\"(a) plank's constant \",h,\"Js\"\n", - "print\"(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) plank's constant 6.592e-34 Js\n", - "(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\n" - ] - } - ], - "prompt_number": 202 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.13 Page no 16" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "h=6.62*10**-34 #Js\n", - "c=3*10**8 #m/s\n", - "lembda=4560.0*10**-10 #m\n", - "p=1*10**-3 #W\n", - "a=0.5/100\n", - "e=1.6*10**-19\n", - "\n", - "#calculation\n", - "E=(h*c)/lembda\n", - "N=p/E #Number of photons incedent on the surface\n", - "n=N*a\n", - "I=n*e\n", - "\n", - "#result\n", - "print\"Photoelectric current \",round(I*10**6,2),\"*10**-6 A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Photoelectric current 1.84 *10**-6 A\n" - ] - } - ], - "prompt_number": 131 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.14 Page no 22" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "m0=9.1*10**-31 #Kg\n", - "c=3*10**8 #m/s\n", - "h=6.6*10**-34 #Js\n", - "v1=2.0*10**-10 #m\n", - "\n", - "#Calculation\n", - "import math\n", - "v= (h/(m0*c))*(1-(math.cos(90))*3.14/180.0)\n", - "v2=v+v1\n", - "v0=v2-v1\n", - "E=(h*c*(v0))/(v1*v2)\n", - "b=(1/(math.sin(90)*3.14/180.0))*((v2*10**-10/v1)-math.cos(90)*3.14/180.0)\n", - "angle=3.14/2.0-math.atan(b)\n", - "\n", - "#Result\n", - "print \"(a) the wavelength of scattered photon is \",round(v2*10**10,3),\"A\"\n", - "print\"(b) The energy of recoil electron is \",round(E*10**17,2),\"*10**-17 J\"\n", - "print\"(c) angle at which the recoil electron appears \",round(angle,2),\"degree\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) the wavelength of scattered photon is 2.024 A\n", - "(b) The energy of recoil electron is 1.19 *10**-17 J\n", - "(c) angle at which the recoil electron appears 1.11 degree\n" - ] - } - ], - "prompt_number": 278 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.15 Page no 23" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given \n", - "E=0.9 #Mev\n", - "a=120 #degree\n", - "m=9.1*10**-31 #Kg\n", - "c=3*10**8 #m/s\n", - "\n", - "#calculation\n", - "b=((m*c**2)/1.6*10**-19)*10**32\n", - "energy=E/(1+2*(E/b)*(3/4.0))\n", - "\n", - "#Result\n", - "print \"energy of scattered photon \",round(energy,3),\"Mev\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "energy of scattered photon 0.247 Mev\n" - ] - } - ], - "prompt_number": 142 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.16 Page no 24" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "v1=2.000*10**-10 #m\n", - "v2=2.048*10**-10 #m\n", - "a=180 #degree\n", - "a1=60 #degree\n", - "h=6.6*10**-34\n", - "c=3*10**8\n", - "\n", - "#Calculation\n", - "import math\n", - "b=(v2-v1)/(1-math.cos(a*3.14/180.0))\n", - "V=v1+b*(1-math.cos(60*3.14/180.0))\n", - "E=(h*c*(V-v1))/(V*v1)\n", - "\n", - "#Result\n", - "print\"(a) wavelength of radiation scattered at an angle of 60 degree \",round(V*10**10,3),\"A\"\n", - "print \"(b) Energy of the recoiul electron is \",round(E*10**18,2),\"*10**-18 J\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) wavelength of radiation scattered at an angle of 60 degree 2.012 A\n", - "(b) Energy of the recoiul electron is 5.9 *10**-18 J\n" - ] - } - ], - "prompt_number": 277 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.17 Page no 24" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "E=4*10**3*1.6*10**-19\n", - "m0=9.1*10**-31\n", - "b=6.4*10**-16\n", - "d=102.39*10**-16\n", - "h=6.3*10**-34\n", - "c=3*10**8\n", - "\n", - "#Calculation\n", - "import math\n", - "p=math.sqrt(2*m0*E)\n", - "d=b+d\n", - "lembda=(2*h*c)/d\n", - "\n", - "#Result\n", - "print\"Wavelength of incident photon is \", round(lembda*10**10,2),\"A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Wavelength of incident photon is 0.35 A\n" - ] - } - ], - "prompt_number": 233 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.19 Page no 26" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Given\n", - "E=1.02 #Mev\n", - "b=0.51\n", - "\n", - "#Calculation\n", - "import math\n", - "alpha=E/b\n", - "a=1/(math.sqrt(2*(alpha+2)))\n", - "angle=2*(math.asin(a)*180/3.14)\n", - "e=E/(1.0+alpha*(1-(math.cos(angle*3.14/180.0))))\n", - "\n", - "#Result\n", - "print\"(a) Angle for symmetric scattering is \", round(angle,1),\"degree\"\n", - "print \"(b) energy of the scattered photon is \",round(e,2),\"Mev\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Angle for symmetric scattering is 41.4 degree\n", - "(b) energy of the scattered photon is 0.68 Mev\n" - ] - } - ], - "prompt_number": 263 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/sample_notebooks/nishumittal/nishumittal_version_backup/chapter1.ipynb b/sample_notebooks/nishumittal/nishumittal_version_backup/chapter1.ipynb new file mode 100755 index 00000000..56991b68 --- /dev/null +++ b/sample_notebooks/nishumittal/nishumittal_version_backup/chapter1.ipynb @@ -0,0 +1,165 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:b803a1650997e1a91a43f6f6211bc977cbde8d0a8e079033f5645dae7b99d4ba" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1 Introduction " + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.1 Page no 9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "Rs=50 #ohm\n", + "\n", + "#Calculation\n", + "Rl=100*Rs\n", + "\n", + "#Result\n", + "print\"Load resistance is\",Rl*10**-3,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Load resistance is 5.0 ohm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.2 Page no 12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "Rs=10*10**3 #Kohm\n", + "\n", + "#Calculation\n", + "Rl=0.01*Rs\n", + "\n", + "#Result\n", + "print\"Value of load resistance is\",Rl,\"Kohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of load resistance is 100.0 Kohm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.4 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "R1=3 #ohm\n", + "R2=6\n", + "R3=4\n", + "\n", + "#Calculation\n", + "Vth=24\n", + "Rth=R3+((R1*R2)/(R1+R2))\n", + "\n", + "#Result\n", + "print\"Thevenin Voltage is\",Vth,\"V\"\n", + "print\"Thevenin resistance is\",Rth,\"Kohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thevenin Voltage is 24 V\n", + "Thevenin resistance is 6 Kohm\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.6 Page no 19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "V=10 #V\n", + "R=2.0 #Kohm\n", + "\n", + "#Calculation\n", + "I=V/R\n", + "\n", + "#Result\n", + "print\"Nortan current is\", I,\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Nortan current is 5.0 mA\n" + ] + } + ], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/sample_notebooks/nishumittal/nishumittal_version_backup/chapter2.ipynb b/sample_notebooks/nishumittal/nishumittal_version_backup/chapter2.ipynb new file mode 100755 index 00000000..3d83df64 --- /dev/null +++ b/sample_notebooks/nishumittal/nishumittal_version_backup/chapter2.ipynb @@ -0,0 +1,710 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:46bc70330d4213802afb03e252b2ad32eb9319ed4cc2a32fe2c16df97a5f1978" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2 Particle nature of Radiation; The origin of Quantum theory" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=40 #W\n", + "lembda=6000*10**-10 #m\n", + "h=6.63*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "n=(E*lembda)/(h*c)\n", + "\n", + "#Result\n", + "print\"No. of photons emitted per second are given by \",round(n*10**-19,2),\"*10**19\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No. of photons emitted per second are given by 12.07 *10**19\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "a=3.2 #ev\n", + "energy=3.8 #ev\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "c=energy-a\n", + "Energy=c*e\n", + "\n", + "#Result\n", + "print\"Kinetic energy of the photoelectron is given by \",Energy,\"Joule\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Kinetic energy of the photoelectron is given by 9.6e-20 Joule\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=3.45 #ev\n", + "h=6.63*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "lembda=(h*c)/(W*e)\n", + "\n", + "#Result\n", + "print\"Maximum wavelength of photon is \",round(lembda*10**10,0),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum wavelength of photon is 3603.0 A\n" + ] + } + ], + "prompt_number": 193 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.5 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=3 #ev\n", + "h=6.63*10**-34\n", + "e=1.6*10**-19\n", + "lembda=3.0*10**-7 #m\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "v0=(W*e)/h\n", + "v=c/lembda\n", + "E=h*(v-v0)\n", + "E1=(h*(v-v0))/(1.6*10**-19)\n", + "V0=E/e\n", + "\n", + "#Result\n", + "print\"(a) Threshold frequency \",round(v0*10**-15,2),\"*10**15 HZ\"\n", + "print\"(b) Maximum energy of photoelectron \",round(E1,2),\"eV\"\n", + "print\"(c) Stopping potential \",round(V0,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Threshold frequency 0.72 *10**15 HZ\n", + "(b) Maximum energy of photoelectron 1.14 eV\n", + "(c) Stopping potential 1.14 V\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6 Page no-13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "v0=6*10**14 #s**-1\n", + "h=6.63*10**-34\n", + "e=1.6*10**-19\n", + "V0=3\n", + "\n", + "#Calculaton\n", + "W=h*v0\n", + "W0=(h*v0)/e\n", + "V=(e*V0+h*v0)/h\n", + "\n", + "#Result \n", + "print\"work function is given by \",round(W0,3),\"ev\"\n", + "print\"frequency is given by \",round(V*10**-15,2),\"*10**15 s-1\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "work function is given by 2.486 ev\n", + "frequency is given by 1.32 *10**15 s-1\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7 Page no 13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=6800.0*10**-10 #m\n", + "h=6.6*10**-34\n", + "W=2.3 #ev\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "E=((h*c)/lembda)/1.6*10**-19\n", + "\n", + "#Result\n", + "print\"Energy is \",round(E*10**38,2),\"ev\"\n", + "print\"since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy is 1.82 ev\n", + "since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.8 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=3500*10**-10 #m\n", + "h=6.6*10**-34\n", + "c=3*10**8 #m/s\n", + "\n", + "#calculation \n", + "E=((h*c)/lembda)/1.6*10**-19\n", + "\n", + "#Result\n", + "print\"Energy is \" ,round(E*10**38,2),\"ev\"\n", + "print\"1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy is 3.54 ev\n", + "1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\n" + ] + } + ], + "prompt_number": 201 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.9 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=6.2*10**-6\n", + "W=0.1 #ev\n", + "h=6.6*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "E=((h*c)/(lembda*e))-W\n", + "\n", + "#Result\n", + "print\"Maximum kinetic energy of photoelectron \",round(E,1),\"ev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum kinetic energy of photoelectron 0.1 ev\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.10 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "e=1.60*10**-19 #C\n", + "slope=4.12*10**-15 #Vs\n", + "\n", + "#Calculation\n", + "h=slope*e\n", + "\n", + "#Result\n", + "print\"Value of plank's constant \",h,\"Js\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of plank's constant 6.592e-34 Js\n" + ] + } + ], + "prompt_number": 114 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.11 Page no 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=2.26*1.6*10**-19 #ev\n", + "v=10**6 #m/s\n", + "m=9*10**-31\n", + "\n", + "#Calculation\n", + "V=((1/2.0)*m*v**2+W)/h\n", + "\n", + "#Result\n", + "print\"frequency of incident radiation \",round(V*10**-15,2),\"*10**15 HZ\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of incident radiation 1.23 *10**15 HZ\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.12 Page no 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "V1=.82 #volts\n", + "V2=1.85 #volts\n", + "lembda1=4.0*10**-7 #m\n", + "lembda2=3.0*10**-7\n", + "e=1.6*10**-19\n", + "c=3.0*10**8 #m/s\n", + "\n", + "#Calculation\n", + "lembda=(1/lembda2)-(1/lembda1)\n", + "h=(e*(V2-V1))/(c*lembda)\n", + "\n", + "#Result\n", + "print\"(a) plank's constant \",h,\"Js\"\n", + "print\"(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) plank's constant 6.592e-34 Js\n", + "(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.13 Page no 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "h=6.62*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "lembda=4560.0*10**-10 #m\n", + "p=1*10**-3 #W\n", + "a=0.5/100\n", + "e=1.6*10**-19\n", + "\n", + "#calculation\n", + "E=(h*c)/lembda\n", + "N=p/E #Number of photons incedent on the surface\n", + "n=N*a\n", + "I=n*e\n", + "\n", + "#result\n", + "print\"Photoelectric current \",round(I*10**6,2),\"*10**-6 A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Photoelectric current 1.84 *10**-6 A\n" + ] + } + ], + "prompt_number": 131 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.14 Page no 22" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "m0=9.1*10**-31 #Kg\n", + "c=3*10**8 #m/s\n", + "h=6.6*10**-34 #Js\n", + "v1=2.0*10**-10 #m\n", + "\n", + "#Calculation\n", + "import math\n", + "v= (h/(m0*c))*(1-(math.cos(90))*3.14/180.0)\n", + "v2=v+v1\n", + "v0=v2-v1\n", + "E=(h*c*(v0))/(v1*v2)\n", + "b=(1/(math.sin(90)*3.14/180.0))*((v2*10**-10/v1)-math.cos(90)*3.14/180.0)\n", + "angle=3.14/2.0-math.atan(b)\n", + "\n", + "#Result\n", + "print \"(a) the wavelength of scattered photon is \",round(v2*10**10,3),\"A\"\n", + "print\"(b) The energy of recoil electron is \",round(E*10**17,2),\"*10**-17 J\"\n", + "print\"(c) angle at which the recoil electron appears \",round(angle,2),\"degree\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) the wavelength of scattered photon is 2.024 A\n", + "(b) The energy of recoil electron is 1.19 *10**-17 J\n", + "(c) angle at which the recoil electron appears 1.11 degree\n" + ] + } + ], + "prompt_number": 278 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.15 Page no 23" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "E=0.9 #Mev\n", + "a=120 #degree\n", + "m=9.1*10**-31 #Kg\n", + "c=3*10**8 #m/s\n", + "\n", + "#calculation\n", + "b=((m*c**2)/1.6*10**-19)*10**32\n", + "energy=E/(1+2*(E/b)*(3/4.0))\n", + "\n", + "#Result\n", + "print \"energy of scattered photon \",round(energy,3),\"Mev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of scattered photon 0.247 Mev\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.16 Page no 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "v1=2.000*10**-10 #m\n", + "v2=2.048*10**-10 #m\n", + "a=180 #degree\n", + "a1=60 #degree\n", + "h=6.6*10**-34\n", + "c=3*10**8\n", + "\n", + "#Calculation\n", + "import math\n", + "b=(v2-v1)/(1-math.cos(a*3.14/180.0))\n", + "V=v1+b*(1-math.cos(60*3.14/180.0))\n", + "E=(h*c*(V-v1))/(V*v1)\n", + "\n", + "#Result\n", + "print\"(a) wavelength of radiation scattered at an angle of 60 degree \",round(V*10**10,3),\"A\"\n", + "print \"(b) Energy of the recoiul electron is \",round(E*10**18,2),\"*10**-18 J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) wavelength of radiation scattered at an angle of 60 degree 2.012 A\n", + "(b) Energy of the recoiul electron is 5.9 *10**-18 J\n" + ] + } + ], + "prompt_number": 277 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.17 Page no 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=4*10**3*1.6*10**-19\n", + "m0=9.1*10**-31\n", + "b=6.4*10**-16\n", + "d=102.39*10**-16\n", + "h=6.3*10**-34\n", + "c=3*10**8\n", + "\n", + "#Calculation\n", + "import math\n", + "p=math.sqrt(2*m0*E)\n", + "d=b+d\n", + "lembda=(2*h*c)/d\n", + "\n", + "#Result\n", + "print\"Wavelength of incident photon is \", round(lembda*10**10,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength of incident photon is 0.35 A\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.19 Page no 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=1.02 #Mev\n", + "b=0.51\n", + "\n", + "#Calculation\n", + "import math\n", + "alpha=E/b\n", + "a=1/(math.sqrt(2*(alpha+2)))\n", + "angle=2*(math.asin(a)*180/3.14)\n", + "e=E/(1.0+alpha*(1-(math.cos(angle*3.14/180.0))))\n", + "\n", + "#Result\n", + "print\"(a) Angle for symmetric scattering is \", round(angle,1),\"degree\"\n", + "print \"(b) energy of the scattered photon is \",round(e,2),\"Mev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Angle for symmetric scattering is 41.4 degree\n", + "(b) energy of the scattered photon is 0.68 Mev\n" + ] + } + ], + "prompt_number": 263 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit