From f270f72badd9c61d48f290c3396004802841b9df Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- .../Chapter_2_Nuclear_Sturcture.ipynb | 234 +++++++++++++++++++++ 1 file changed, 234 insertions(+) create mode 100755 sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture.ipynb (limited to 'sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture.ipynb') diff --git a/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture.ipynb b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture.ipynb new file mode 100755 index 00000000..505cf999 --- /dev/null +++ b/sample_notebooks/makarala shamukha venkatasahithi/Chapter_2_Nuclear_Sturcture.ipynb @@ -0,0 +1,234 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2 Nuclear Sturcture and Radioactivity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_1 pgno:25" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Half life of radioactive nuclide=t1/2=minutes 14.7674928978\n", + "\n", + "Time required for the activity to decrease to 25percent of the initial activity=t1=minutes 68.0335182976\n", + "\n", + "Time required for the activity to decrease to 10percent of the initial activity=t2=minutes 113.001227913\n" + ] + } + ], + "source": [ + "from math import log\n", + "N0=3396.;#no. of counts per minute given by radioactive nuclide at a given time#\n", + "N=1000.;#no. of counts per minute given by radioactive nuclide one hour later#\n", + "thalf=0.693*60/(2.303*log(N0/N));#half life of nuclide in minutes#\n", + "print'Half life of radioactive nuclide=t1/2=minutes',thalf\n", + "t1=2.303*log(100/25)*thalf/0.693;#time required for the activity to decrease to 25% of the initial activity in minutes#\n", + "print'\\nTime required for the activity to decrease to 25percent of the initial activity=t1=minutes',t1\n", + "t2=2.303*log(100/10)*thalf/0.693;#time required for the activity to decrease to 10% of the initial activity in minutes#\n", + "print'\\nTime required for the activity to decrease to 10percent of the initial activity=t2=minutes',t2\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_2 pgno:27" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Half life of 226Ra molecule=t1/2=years 1584.62090409\n" + ] + } + ], + "source": [ + "R=3.7*10**10;#no. of alpha particles per second emitted by 1g of 226Ra#\n", + "N=(6.023*10**23)/226;#no. of atoms of 226Ra#\n", + "yr=3.15*10**7;#no of seconds in a year#\n", + "thalf=0.693*N/(R*yr);#half life of 226Ra in years#\n", + "print'Half life of 226Ra molecule=t1/2=years',thalf#here the answer written in textbook is wrongly printed actual answer will be the one we are getting here#\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_3 pgno:29" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams 0.113352495089\n" + ] + } + ], + "source": [ + "thalf=14.8*60*60;#half life of 24Na atom in seconds#\n", + "L=6.023*10**23;#Avagadro number#\n", + "v=3.7*10**10;#1 Ci of radioactivity in disintegrations per second#\n", + "w=(24*10**6*v*thalf)/(0.693*L);#weight of 1 Ci of 24Na in grams#\n", + "print'Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams',w\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_4 pgno:30" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dM value of H atom=dM=amu 0.00239\n", + "\n", + "Binding energy of H atom=BE=MeV 2.22509\n" + ] + } + ], + "source": [ + "Mp=1.00728;#mass of proton in amu#\n", + "Mn=1.00866;#mass of neutronin amu#\n", + "MH=2.01355;#isotopic mass of H atom in amu#\n", + "dM=((1*Mp)+(1*Mn)-MH);#dM value of H atom in amu#\n", + "print'dM value of H atom=dM=amu',dM\n", + "BE=dM*931;#binding energy of H atom in MeV#\n", + "print'\\nBinding energy of H atom=BE=MeV',BE\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_5 pgno:32" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age of the specimen=t=%fyears 36120.0499843\n" + ] + } + ], + "source": [ + "from math import log\n", + "N0=15.3;#decay rate of Contemporary Carbon in disintegrations/min/gram#\n", + "N=2.25;#decay rate of 14C specimen in disintegrtions/min/gram#\n", + "thalf=5670.;#half life of nuclide in years#\n", + "t=2.303*log(N0/N)*thalf/0.693;#Age of the specimen in years#\n", + "print'Age of the specimen=t=years',t#here the answer given in textbook is actually wrong we get twice that of the answer which is shown through execution#\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2_6 pgno:33" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium\n", + "\n", + "N0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\n", + "Since N is proportional to 1,N0 is proportional to 1.0523.\n", + "\n", + "Age of the mineral=t=years=7.62*10**8years 762356478.526\n" + ] + } + ], + "source": [ + "from math import log\n", + "thalf=4.5*10**9;#half life of Uranium in years#\n", + "print'Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium'\n", + "print'\\nN0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\\nSince N is proportional to 1,N0 is proportional to 1.0523.'\n", + "N0=1.0523;\n", + "N=1;\n", + "t=2.303*log(N0/N)*thalf/0.693;#Age of the mineral in years#\n", + "print'\\nAge of the mineral=t=years=7.62*10**8years',t#here also the answer given in textbook is wrong the one resulted through execution is the right one#\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit