From 44374f5910ed12df7ad65318de217c6eafa3365f Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Mon, 21 Dec 2015 23:30:13 +0600 Subject: Added(A)/Deleted(D) following books A Microwave_engineering__by_D.M.Pozar_/Chapter_10_ACTIVE_MICROWAVE_CIRCUITS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_12_INTRODUCTION_TO_MICROWAVE_SYSTEMS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_1_ELECTROMAGNETIC_THEORY.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_2_TRANSMISSION_LINE_THEORY.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_3_TRANSMISSION_LINE_AND_WAVEGUIDES.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_4_MICROWAVE_NETWORK_ANALYSIS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_5_IMPEDENCE_MATCHING_AND_TUNNING.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_6_MICROWAVE_RESONATORS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_7_POWER_DIVIDERS_DIRECTIONAL_COUPLERS_AND_HYBRIDS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_8_MICROWAVE_FILTERS.ipynb A Microwave_engineering__by_D.M.Pozar_/Chapter_9_THEORY_AND_DESIGN_OF_FERRIMAGNETIC_COMPONENTS.ipynb A Microwave_engineering__by_D.M.Pozar_/screenshots/Screen_Shot_2015-12-21_at_10.35.42_pm.png A Microwave_engineering__by_D.M.Pozar_/screenshots/Screen_Shot_2015-12-21_at_10.37.21_pm.png A Microwave_engineering__by_D.M.Pozar_/screenshots/Screen_Shot_2015-12-21_at_10.37.54_pm.png A sample_notebooks/PrashantSahu/Chapter-2-Molecular_Diffusion_-_Principles_of_Mass_Transfer_and_Separation_Process_by_Binay_K_Dutta.ipynb A sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb A sample_notebooks/UmangAgarwal/Sample_Notebook_1.ipynb --- .../UmangAgarwal/Sample_Notebook.ipynb | 128 +++++++++++++++++++++ .../UmangAgarwal/Sample_Notebook_1.ipynb | 128 +++++++++++++++++++++ 2 files changed, 256 insertions(+) create mode 100644 sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb create mode 100644 sample_notebooks/UmangAgarwal/Sample_Notebook_1.ipynb (limited to 'sample_notebooks/UmangAgarwal') diff --git a/sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb b/sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb new file mode 100644 index 00000000..34fb4a40 --- /dev/null +++ b/sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb @@ -0,0 +1,128 @@ +Sample Notebook - Heat and Mass Transfer by R.K. Rajput : Chapter 1 - Basic Concepts +author: Umang Agarwal + + +# Example 1.1 Page 16-17 + +L=.045; #[m] - Thickness of conducting wall +delT = 350 - 50; #[C] - Temperature Difference across the Wall +k=370; #[W/m.C] - Thermal Conductivity of Wall Material +#calculations +#Using Fourier's Law eq 1.1 +q = k*delT/(L*10**6); #[MW/m^2] - Heat Flux +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",q," W"); +#END + +# Example 1.2 Page 17 + +L = .15; #[m] - Thickness of conducting wall +delT = 150 - 45; #[C] - Temperature Difference across the Wall +A = 4.5; #[m^2] - Wall Area +k=9.35; #[W/m.C] - Thermal Conductivity of Wall Material +#calculations +#Using Fourier's Law eq 1.1 +Q = k*A*delT/L; #[W] - Heat Transfer +#Temperature gradient using Fourier's Law +TG = - Q/(k*A); #[C/m] - Temperature Gradient +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",Q," W"); +print '%s %.2f %s' %("\n \n The Temperature Gradient in the flow direction =",TG," C/m"); +#END + +# Example 1.3 Page 17-18 + +x = .0825; #[m] - Thickness of side wall of the conducting oven +delT = 175 - 75; #[C] - Temperature Difference across the Wall +k=0.044; #[W/m.C] - Thermal Conductivity of Wall Insulation +Q = 40.5; #[W] - Energy dissipitated by the electric coil withn the oven +#calculations +#Using Fourier's Law eq 1.1 +A = (Q*x)/(k*delT); #[m^2] - Area of wall +#results +print '%s %.2f %s' %("\n \n Area of the wall =",A," m^2"); +#END + +# Example 1.4 Page 18-19 + +delT = 300-20; #[C] - Temperature Difference across the Wall +h = 20; #[W/m^2.C] - Convective Heat Transfer Coefficient +A = 1*1.5; #[m^2] - Wall Area +#calculations +#Using Newton's Law of cooling eq 1.6 +Q = h*A*delT; #[W] - Heat Transfer +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +#END + +# Example 1.5 Page 19 + +L=.15; #[m] - Length of conducting wire +d = 0.0015; #[m] - Diameter of conducting wire +A = 22*d*L/7; #[m^2] - Surface Area exposed to Convection +delT = 120 - 100; #[C] - Temperature Difference across the Wire +h = 4500; #[W/m^2.C] - Convective Heat Transfer Coefficient +print 'Electric Power to be supplied = Convective Heat loss'; +#calculations +#Using Newton's Law of cooling eq 1.6 +Q = h*A*delT; #[W] - Heat Transfer +Q = round(Q,1); +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +#END + +# Example 1.6 Page 20-21 + +T1 = 300 + 273; #[K] - Temperature of 1st surface +T2 = 40 + 273; #[K] - Temperature of 2nd surface +A = 1.5; #[m^2] - Surface Area +F = 0.52; #[dimensionless] - The value of Factor due geometric location and emissivity +sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant +#calculations +#Using Stephen-Boltzmann Law eq 1.9 +Q = F*sigma*A*(T1**4 - T2**4) #[W] - Heat Transfer +#Equivalent Thermal Resistance using eq 1.10 +Rth = (T1-T2)/Q; #[C/W] - Equivalent Thermal Resistance +#Equivalent convectoin coefficient using h*A*(T1-T2) = Q +h = Q/(A*(T1-T2)); #[W/(m^2*C)] - Equivalent Convection Coefficient +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +print '%s %.2f %s' %("\n The equivalent thermal resistance =",Rth," C/W"); +print '%s %.2f %s' %("\n The equivalent convection coefficient =",h," W/(m^2 * C)"); +#END + +# Example 1.7 Page 21-22 + +L = 0.025; #[m] - Thickness of plate +A = 0.6*0.9; #[m^2] - Area of plate +Ts = 310; #[C] - Surface Temperature of plate +Tf = 15; #[C] - Temperature of fluid(air) +h = 22; #[W/m^2.C] - Convective Heat Transfer Coefficient +Qr = 250; #[W] - Heat lost from the plate due to radiation +k = 45; #[W/m.C] - Thermal Conductivity of Plate +#calculations +# In this problem, heat conducted by the plate is removed by a combination of convection and radiation +# Heat conducted through the plate = Convection Heat losses + Radiation Losses +# If Ti is the internal plate temperature, then heat conducted = k*A*(Ts-Ti)/L +Qc = h*A*(Ts-Tf); #[W] - Convection Heat Loss +Ti = Ts + L*(Qc + Qr)/(A*k); #[C] - Inside plate Temperature +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Ti," C"); +#END + +# Example 1.8 Page 22 + +Ts = 250; #[C] - Surface Temperature +Tsurr = 110; #[C] - Temperature of surroundings +h = 75; #[W/m^2.C] - Convective Heat Transfer Coefficient +F = 1; #[dimensionless] - The value of Factor due geometric location and emissivity +sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant +k = 10; #[W/m.C] - Thermal Conductivity of Solid +#calculations +# Heat conducted through the plate = Convection Heat losses + Radiation Losses +qr = F*sigma*((Ts+273)**4-(Tsurr+273)**4) #[W/m^2] - #[W] - Heat lost per unit area from the plate due to radiation +qc = h*(Ts-Tsurr); #[W/m^2] - Convection Heat Loss per unit area +TG = -(qc+qr)/k; #[C/m] - Temperature Gradient +#results +print '%s %.2f %s' %("\n \n The temperature Gradient =",TG," C/m"); +#END diff --git a/sample_notebooks/UmangAgarwal/Sample_Notebook_1.ipynb b/sample_notebooks/UmangAgarwal/Sample_Notebook_1.ipynb new file mode 100644 index 00000000..34fb4a40 --- /dev/null +++ b/sample_notebooks/UmangAgarwal/Sample_Notebook_1.ipynb @@ -0,0 +1,128 @@ +Sample Notebook - Heat and Mass Transfer by R.K. Rajput : Chapter 1 - Basic Concepts +author: Umang Agarwal + + +# Example 1.1 Page 16-17 + +L=.045; #[m] - Thickness of conducting wall +delT = 350 - 50; #[C] - Temperature Difference across the Wall +k=370; #[W/m.C] - Thermal Conductivity of Wall Material +#calculations +#Using Fourier's Law eq 1.1 +q = k*delT/(L*10**6); #[MW/m^2] - Heat Flux +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",q," W"); +#END + +# Example 1.2 Page 17 + +L = .15; #[m] - Thickness of conducting wall +delT = 150 - 45; #[C] - Temperature Difference across the Wall +A = 4.5; #[m^2] - Wall Area +k=9.35; #[W/m.C] - Thermal Conductivity of Wall Material +#calculations +#Using Fourier's Law eq 1.1 +Q = k*A*delT/L; #[W] - Heat Transfer +#Temperature gradient using Fourier's Law +TG = - Q/(k*A); #[C/m] - Temperature Gradient +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",Q," W"); +print '%s %.2f %s' %("\n \n The Temperature Gradient in the flow direction =",TG," C/m"); +#END + +# Example 1.3 Page 17-18 + +x = .0825; #[m] - Thickness of side wall of the conducting oven +delT = 175 - 75; #[C] - Temperature Difference across the Wall +k=0.044; #[W/m.C] - Thermal Conductivity of Wall Insulation +Q = 40.5; #[W] - Energy dissipitated by the electric coil withn the oven +#calculations +#Using Fourier's Law eq 1.1 +A = (Q*x)/(k*delT); #[m^2] - Area of wall +#results +print '%s %.2f %s' %("\n \n Area of the wall =",A," m^2"); +#END + +# Example 1.4 Page 18-19 + +delT = 300-20; #[C] - Temperature Difference across the Wall +h = 20; #[W/m^2.C] - Convective Heat Transfer Coefficient +A = 1*1.5; #[m^2] - Wall Area +#calculations +#Using Newton's Law of cooling eq 1.6 +Q = h*A*delT; #[W] - Heat Transfer +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +#END + +# Example 1.5 Page 19 + +L=.15; #[m] - Length of conducting wire +d = 0.0015; #[m] - Diameter of conducting wire +A = 22*d*L/7; #[m^2] - Surface Area exposed to Convection +delT = 120 - 100; #[C] - Temperature Difference across the Wire +h = 4500; #[W/m^2.C] - Convective Heat Transfer Coefficient +print 'Electric Power to be supplied = Convective Heat loss'; +#calculations +#Using Newton's Law of cooling eq 1.6 +Q = h*A*delT; #[W] - Heat Transfer +Q = round(Q,1); +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +#END + +# Example 1.6 Page 20-21 + +T1 = 300 + 273; #[K] - Temperature of 1st surface +T2 = 40 + 273; #[K] - Temperature of 2nd surface +A = 1.5; #[m^2] - Surface Area +F = 0.52; #[dimensionless] - The value of Factor due geometric location and emissivity +sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant +#calculations +#Using Stephen-Boltzmann Law eq 1.9 +Q = F*sigma*A*(T1**4 - T2**4) #[W] - Heat Transfer +#Equivalent Thermal Resistance using eq 1.10 +Rth = (T1-T2)/Q; #[C/W] - Equivalent Thermal Resistance +#Equivalent convectoin coefficient using h*A*(T1-T2) = Q +h = Q/(A*(T1-T2)); #[W/(m^2*C)] - Equivalent Convection Coefficient +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W"); +print '%s %.2f %s' %("\n The equivalent thermal resistance =",Rth," C/W"); +print '%s %.2f %s' %("\n The equivalent convection coefficient =",h," W/(m^2 * C)"); +#END + +# Example 1.7 Page 21-22 + +L = 0.025; #[m] - Thickness of plate +A = 0.6*0.9; #[m^2] - Area of plate +Ts = 310; #[C] - Surface Temperature of plate +Tf = 15; #[C] - Temperature of fluid(air) +h = 22; #[W/m^2.C] - Convective Heat Transfer Coefficient +Qr = 250; #[W] - Heat lost from the plate due to radiation +k = 45; #[W/m.C] - Thermal Conductivity of Plate +#calculations +# In this problem, heat conducted by the plate is removed by a combination of convection and radiation +# Heat conducted through the plate = Convection Heat losses + Radiation Losses +# If Ti is the internal plate temperature, then heat conducted = k*A*(Ts-Ti)/L +Qc = h*A*(Ts-Tf); #[W] - Convection Heat Loss +Ti = Ts + L*(Qc + Qr)/(A*k); #[C] - Inside plate Temperature +#results +print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Ti," C"); +#END + +# Example 1.8 Page 22 + +Ts = 250; #[C] - Surface Temperature +Tsurr = 110; #[C] - Temperature of surroundings +h = 75; #[W/m^2.C] - Convective Heat Transfer Coefficient +F = 1; #[dimensionless] - The value of Factor due geometric location and emissivity +sigma = 5.67*(10**-8) #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant +k = 10; #[W/m.C] - Thermal Conductivity of Solid +#calculations +# Heat conducted through the plate = Convection Heat losses + Radiation Losses +qr = F*sigma*((Ts+273)**4-(Tsurr+273)**4) #[W/m^2] - #[W] - Heat lost per unit area from the plate due to radiation +qc = h*(Ts-Tsurr); #[W/m^2] - Convection Heat Loss per unit area +TG = -(qc+qr)/k; #[C/m] - Temperature Gradient +#results +print '%s %.2f %s' %("\n \n The temperature Gradient =",TG," C/m"); +#END -- cgit