From 10f6fb8cd1d840a3042651dfaa6fd5af4924b94a Mon Sep 17 00:00:00 2001
From: Thomas Stephen Lee
Date: Mon, 31 Aug 2015 13:48:07 +0530
Subject: add books

---
 sample_notebooks/SundeepKatta/Chapter2.ipynb | 441 +++++++++++++++++++++++++++
 1 file changed, 441 insertions(+)
 create mode 100644 sample_notebooks/SundeepKatta/Chapter2.ipynb

(limited to 'sample_notebooks/SundeepKatta')

diff --git a/sample_notebooks/SundeepKatta/Chapter2.ipynb b/sample_notebooks/SundeepKatta/Chapter2.ipynb
new file mode 100644
index 00000000..601cae27
--- /dev/null
+++ b/sample_notebooks/SundeepKatta/Chapter2.ipynb
@@ -0,0 +1,441 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#2: Crystal Structures"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.1, Page number 2.23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "lattice constant is 4.0 *10**-10 m\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=60.2;     #molecular weight\n",
+    "Na=6.023*10**26;    #avagadro number(kg/mole)\n",
+    "n=4;    \n",
+    "rho=6250;           #density(kg/m**3)\n",
+    "\n",
+    "#Calculation\n",
+    "a=(n*M/(rho*Na))**(1/3);     #lattice constant(m)\n",
+    "\n",
+    "#Result\n",
+    "print \"lattice constant is\",round(a*10**10),\"*10**-10 m\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.2, Page number 2.23"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "density is 8.93 gm/cm**3\n",
+      "answer in the book varies due to rounding off errors\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=63.5;     #molecular weight\n",
+    "Na=6.023*10**26;    #avagadro number(kg/mole)\n",
+    "n=4;    \n",
+    "r=1.278*10**-8;     #atomic radius(cm)\n",
+    "\n",
+    "#Calculation\n",
+    "a=2*math.sqrt(2)*r;   #lattice constant(m)\n",
+    "rho=n*M/(a**3*Na);    #density(kg/cm**3)\n",
+    "\n",
+    "#Result\n",
+    "print \"density is\",round(rho*10**3,2),\"gm/cm**3\"\n",
+    "print \"answer in the book varies due to rounding off errors\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.3, Page number 2.24"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "ratio of densities is 0.92\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "pf_BCC=math.pi*math.sqrt(3)/8;    #packing factor for BCC\n",
+    "pf_FCC=math.pi/(3*math.sqrt(2));     #packing factor of FCC\n",
+    "\n",
+    "#Calculation\n",
+    "r=pf_BCC/pf_FCC;     #ratio of densities\n",
+    "\n",
+    "#Result\n",
+    "print \"ratio of densities is\",round(r,2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.4, Page number 2.24"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "lattice constant is 2.8687 angstrom\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=55.85;     #molecular weight\n",
+    "Na=6.02*10**26;    #avagadro number(kg/mole)\n",
+    "n=2;    \n",
+    "rho=7860;           #density(kg/m**3)\n",
+    "\n",
+    "#Calculation\n",
+    "a=(n*M/(rho*Na))**(1/3);     #lattice constant(m)\n",
+    "\n",
+    "#Result\n",
+    "print \"lattice constant is\",round(a*10**10,4),\"angstrom\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.5, Page number 2.24"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "lattice constant is 5.6 angstrom\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=58.5;     #molecular weight\n",
+    "Na=6.02*10**26;    #avagadro number(kg/mole)\n",
+    "n=4;    \n",
+    "rho=2189;           #density(kg/m**3)\n",
+    "\n",
+    "#Calculation\n",
+    "a=(n*M/(rho*Na))**(1/3);     #lattice constant(m)\n",
+    "\n",
+    "#Result\n",
+    "print \"lattice constant is\",round(a*10**10,1),\"angstrom\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.6, Page number 2.25"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "lattice constant is 3.517 angstrom\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "M=6.94;     #molecular weight\n",
+    "Na=6.02*10**26;    #avagadro number(kg/mole)\n",
+    "n=2;    \n",
+    "rho=530;           #density(kg/m**3)\n",
+    "\n",
+    "#Calculation\n",
+    "a=(n*M/(rho*Na))**(1/3);     #lattice constant(m)\n",
+    "\n",
+    "#Result\n",
+    "print \"lattice constant is\",round(a*10**10,3),\"angstrom\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.7, Page number 2.25"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "percent volume change is 0.493 %\n",
+      "answer in the book varies due to rounding off errors\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "r1=1.258*10**-10;     #radius(m)\n",
+    "r2=1.292*10**-10;     #radius(m)\n",
+    "\n",
+    "#Calculation\n",
+    "a_bcc=4*r1/math.sqrt(3);\n",
+    "v=a_bcc**3;\n",
+    "V1=v/2;\n",
+    "a_fcc=2*math.sqrt(2)*r2;\n",
+    "V2=a_fcc**3/4;\n",
+    "V=(V1-V2)*100/V1;           #percent volume change is\",V,\"%\"\n",
+    "\n",
+    "#Result\n",
+    "print \"percent volume change is\",round(V,3),\"%\"\n",
+    "print \"answer in the book varies due to rounding off errors\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.8, Page number 2.26"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "number of atoms/m**3 is 1.77 *10**29\n",
+      "density of diamond is 3534.47 kg/m**3\n",
+      "answer in the book is wrong\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "\n",
+    "#Variable declaration\n",
+    "a=0.356*10**-9;       #cube edge(m)\n",
+    "w=12;    #atomic weight\n",
+    "Na=6.02*10**26;    #avagadro number(kg/mole)\n",
+    "\n",
+    "#Calculation\n",
+    "n=8/(a**3);     #number of atoms/m**3\n",
+    "m=w/Na;      #mass(kg)\n",
+    "rho=m*n;     #density of diamond(kg/m**3)\n",
+    "\n",
+    "#Result\n",
+    "print \"number of atoms/m**3 is\",round(n/10**29,2),\"*10**29\"\n",
+    "print \"density of diamond is\",round(rho,2),\"kg/m**3\"\n",
+    "print \"answer in the book is wrong\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.9, Page number 2.26"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "maximum radius of sphere is 0.414 r\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "from sympy import *\n",
+    "\n",
+    "#Variable declaration\n",
+    "r=Symbol('r')\n",
+    "\n",
+    "#Calculation\n",
+    "a=4*r/math.sqrt(2);\n",
+    "R=(4*r/(2*math.sqrt(2)))-r;       #maximum radius of sphere\n",
+    "\n",
+    "#Result\n",
+    "print \"maximum radius of sphere is\",round(R/r,3),\"r\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##Example number 2.10, Page number 2.26"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "radius of largest sphere is 0.155 r\n"
+     ]
+    }
+   ],
+   "source": [
+    "#importing modules\n",
+    "import math\n",
+    "from __future__ import division\n",
+    "from sympy import *\n",
+    "\n",
+    "#Variable declaration\n",
+    "r=Symbol('r')\n",
+    "\n",
+    "#Calculation\n",
+    "a=4*r/math.sqrt(3);\n",
+    "R=(a/2)-r;           #radius of largest sphere\n",
+    "\n",
+    "#Result\n",
+    "print \"radius of largest sphere is\",round(R/r,3),\"r\""
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 2",
+   "language": "python",
+   "name": "python2"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 2
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython2",
+   "version": "2.7.9"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
-- 
cgit