From c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- sample_notebooks/ShriniwasSabban/Chapter2.ipynb | 233 ++++++++++++++++++++++ sample_notebooks/ShriniwasSabban/Chapter2_1.ipynb | 233 ++++++++++++++++++++++ 2 files changed, 466 insertions(+) create mode 100755 sample_notebooks/ShriniwasSabban/Chapter2.ipynb create mode 100755 sample_notebooks/ShriniwasSabban/Chapter2_1.ipynb (limited to 'sample_notebooks/ShriniwasSabban') diff --git a/sample_notebooks/ShriniwasSabban/Chapter2.ipynb b/sample_notebooks/ShriniwasSabban/Chapter2.ipynb new file mode 100755 index 00000000..1872c9f4 --- /dev/null +++ b/sample_notebooks/ShriniwasSabban/Chapter2.ipynb @@ -0,0 +1,233 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 02 : Power Semiconductor Diodes and Transistors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1, Page No 21" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#initialisation of variables\n", + "B=40.0\n", + "R_c=10 #ohm\n", + "V_cc=130.0 #V\n", + "V_B=10.0 #V\n", + "V_CES=1.0 #V\n", + "V_BES=1.5 #V\n", + "\n", + "#Calculations\n", + "I_CS=(V_cc-V_CES)/R_c #A\n", + "I_BS=I_CS/B #A\n", + "R_B1=(V_B-V_BES)/I_BS\n", + "P_T1=V_BES*I_BS+V_CES*I_CS\n", + "ODF=5\n", + "I_B=ODF*I_BS\n", + "R_B2=(V_B-V_BES)/I_B\n", + "P_T2=V_BES*I_B+V_CES*I_CS\n", + "B_f=I_CS/I_B\n", + "\n", + "#Results\n", + "print(\"value of R_B in saturated state= %.2f ohm\" %R_B1)\n", + "print(\"Power loss in transistor=%.2f W\" %P_T1)\n", + "print(\"Value of R_B for an overdrive factor 5 = %.2f ohm\" %R_B2)\n", + "print(\"Power loss in transistor = %.2f W\" %P_T2)\n", + "print(\"Forced current gain=%.0f\" %B_f)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of R_B in saturated state= 26.36 ohm\n", + "Power loss in transistor=13.38 W\n", + "Value of R_B for an overdrive factor 5 = 5.27 ohm\n", + "Power loss in transistor = 15.32 W\n", + "Forced current gain=8\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2, Page No 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "I_CEO=2*10**-3 #A\n", + "V_CC=220.0 #V\n", + "P_dt=I_CEO*V_CC #instant. power loss during delay time\n", + "t_d=.4*10**-6 #s\n", + "f=5000\n", + "P_d=f*I_CEO*V_CC*t_d #avg power loss during delay time\n", + "V_CES=2 #V\n", + "t_r=1*10**-6 #s\n", + "I_CS=80 #A\n", + "\n", + "#Calculations\n", + "P_r=f*I_CS*t_r*(V_CC/2-(V_CC-V_CES)/3) #avg power loss during rise time\n", + "t_m=V_CC*t_r/(2*(V_CC-V_CES))\n", + "P_rm=I_CS*V_CC**2/(4*(V_CC-V_CES)) #instant. power loss during rise time\n", + "\n", + "#Results\n", + "P_on=P_d+P_r \n", + "print(\"Avg power loss during turn on = %.2f W\" %P_on)\n", + "P_nt=I_CS*V_CES \n", + "print(\"Instantaneous power loss during turn on = %.0f W\" %P_nt)\n", + "t_n=50*10**-6\n", + "P_n=f*I_CS*V_CES*t_n\n", + "print(\"Avg power loss during conduction period = %.0f W\" %P_n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Avg power loss during turn on = 14.93 W\n", + "Instantaneous power loss during turn on = 160 W\n", + "Avg power loss during conduction period = 40 W\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page No 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "I_CEO=2*10**-3 #A\n", + "V_CC=220 #V\n", + "t_d=.4*10**-6 #s\n", + "f=5000\n", + "V_CES=2 #V\n", + "t_r=1*10**-6 #s\n", + "I_CS=80 #A\n", + "t_n=50*10**-6 #s\n", + "t_0=40*10**-6 #s\n", + "t_f=3*10**-6 #s\n", + "\n", + "#Calculations\n", + "P_st=I_CS*V_CES # instant. power loss during t_s\n", + "P_s=f*I_CS*V_CES*t_f #avg power loss during t_s\n", + "P_f=f*t_f*(I_CS/6)*(V_CC-V_CES) #avg power loss during fall time\n", + "P_fm=(I_CS/4)*(V_CC-V_CES) #peak instant power dissipation\n", + "P_off=P_s+P_f\n", + "\n", + "#Results\n", + "print(\"Total avg power loss during turn off = %.2f W\" %P_off)\n", + "P_0t=I_CEO*V_CC\n", + "print(\"Instantaneous power loss during t_0 = %.2f W\" %P_0t)\n", + "P_0=f*I_CEO*V_CC*t_0 #avg power loss during t_s\n", + "P_on=14.9339 #W from previous eg\n", + "P_n=40 #W from previous eg\n", + "P_T=P_on+P_n+P_off+P_0 \n", + "print(\"Total power loss = %.2f W\" %P_T)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total avg power loss during turn off = 44.91 W\n", + "Instantaneous power loss during t_0 = 0.44 W\n", + "Total power loss = 99.93 W\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4, Page No 28" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#initialisation of variables\n", + "I_CS=100.0 \n", + "V_CC=200.0 \n", + "t_on=40*10**-6\n", + "\n", + "#Calculations\n", + "P_on=(I_CS/50)*10**6*t_on*(V_CC*t_on/2-(V_CC*10**6*t_on**2/(40*3))) #energy during turn on\n", + "t_off=60*10**-6\n", + "P_off=(I_CS*t_off/2-(I_CS/60)*10**6*(t_off**2)/3)*((V_CC/75)*10**6*t_off) #energy during turn off\n", + "P_t=P_on+P_off #total energy\n", + "P_avg=300.0\n", + "f=P_avg/P_t\n", + "\n", + "#Results\n", + "print(\"Allowable switching frequency = %.2f Hz\" %f)\n", + "#in book ans is: f=1123.6 Hz. The difference in results due to difference in rounding of of digits" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Allowable switching frequency = 1125.00 Hz\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/sample_notebooks/ShriniwasSabban/Chapter2_1.ipynb b/sample_notebooks/ShriniwasSabban/Chapter2_1.ipynb new file mode 100755 index 00000000..1872c9f4 --- /dev/null +++ b/sample_notebooks/ShriniwasSabban/Chapter2_1.ipynb @@ -0,0 +1,233 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 02 : Power Semiconductor Diodes and Transistors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1, Page No 21" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#initialisation of variables\n", + "B=40.0\n", + "R_c=10 #ohm\n", + "V_cc=130.0 #V\n", + "V_B=10.0 #V\n", + "V_CES=1.0 #V\n", + "V_BES=1.5 #V\n", + "\n", + "#Calculations\n", + "I_CS=(V_cc-V_CES)/R_c #A\n", + "I_BS=I_CS/B #A\n", + "R_B1=(V_B-V_BES)/I_BS\n", + "P_T1=V_BES*I_BS+V_CES*I_CS\n", + "ODF=5\n", + "I_B=ODF*I_BS\n", + "R_B2=(V_B-V_BES)/I_B\n", + "P_T2=V_BES*I_B+V_CES*I_CS\n", + "B_f=I_CS/I_B\n", + "\n", + "#Results\n", + "print(\"value of R_B in saturated state= %.2f ohm\" %R_B1)\n", + "print(\"Power loss in transistor=%.2f W\" %P_T1)\n", + "print(\"Value of R_B for an overdrive factor 5 = %.2f ohm\" %R_B2)\n", + "print(\"Power loss in transistor = %.2f W\" %P_T2)\n", + "print(\"Forced current gain=%.0f\" %B_f)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of R_B in saturated state= 26.36 ohm\n", + "Power loss in transistor=13.38 W\n", + "Value of R_B for an overdrive factor 5 = 5.27 ohm\n", + "Power loss in transistor = 15.32 W\n", + "Forced current gain=8\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2, Page No 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "I_CEO=2*10**-3 #A\n", + "V_CC=220.0 #V\n", + "P_dt=I_CEO*V_CC #instant. power loss during delay time\n", + "t_d=.4*10**-6 #s\n", + "f=5000\n", + "P_d=f*I_CEO*V_CC*t_d #avg power loss during delay time\n", + "V_CES=2 #V\n", + "t_r=1*10**-6 #s\n", + "I_CS=80 #A\n", + "\n", + "#Calculations\n", + "P_r=f*I_CS*t_r*(V_CC/2-(V_CC-V_CES)/3) #avg power loss during rise time\n", + "t_m=V_CC*t_r/(2*(V_CC-V_CES))\n", + "P_rm=I_CS*V_CC**2/(4*(V_CC-V_CES)) #instant. power loss during rise time\n", + "\n", + "#Results\n", + "P_on=P_d+P_r \n", + "print(\"Avg power loss during turn on = %.2f W\" %P_on)\n", + "P_nt=I_CS*V_CES \n", + "print(\"Instantaneous power loss during turn on = %.0f W\" %P_nt)\n", + "t_n=50*10**-6\n", + "P_n=f*I_CS*V_CES*t_n\n", + "print(\"Avg power loss during conduction period = %.0f W\" %P_n)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Avg power loss during turn on = 14.93 W\n", + "Instantaneous power loss during turn on = 160 W\n", + "Avg power loss during conduction period = 40 W\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page No 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "I_CEO=2*10**-3 #A\n", + "V_CC=220 #V\n", + "t_d=.4*10**-6 #s\n", + "f=5000\n", + "V_CES=2 #V\n", + "t_r=1*10**-6 #s\n", + "I_CS=80 #A\n", + "t_n=50*10**-6 #s\n", + "t_0=40*10**-6 #s\n", + "t_f=3*10**-6 #s\n", + "\n", + "#Calculations\n", + "P_st=I_CS*V_CES # instant. power loss during t_s\n", + "P_s=f*I_CS*V_CES*t_f #avg power loss during t_s\n", + "P_f=f*t_f*(I_CS/6)*(V_CC-V_CES) #avg power loss during fall time\n", + "P_fm=(I_CS/4)*(V_CC-V_CES) #peak instant power dissipation\n", + "P_off=P_s+P_f\n", + "\n", + "#Results\n", + "print(\"Total avg power loss during turn off = %.2f W\" %P_off)\n", + "P_0t=I_CEO*V_CC\n", + "print(\"Instantaneous power loss during t_0 = %.2f W\" %P_0t)\n", + "P_0=f*I_CEO*V_CC*t_0 #avg power loss during t_s\n", + "P_on=14.9339 #W from previous eg\n", + "P_n=40 #W from previous eg\n", + "P_T=P_on+P_n+P_off+P_0 \n", + "print(\"Total power loss = %.2f W\" %P_T)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total avg power loss during turn off = 44.91 W\n", + "Instantaneous power loss during t_0 = 0.44 W\n", + "Total power loss = 99.93 W\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4, Page No 28" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#initialisation of variables\n", + "I_CS=100.0 \n", + "V_CC=200.0 \n", + "t_on=40*10**-6\n", + "\n", + "#Calculations\n", + "P_on=(I_CS/50)*10**6*t_on*(V_CC*t_on/2-(V_CC*10**6*t_on**2/(40*3))) #energy during turn on\n", + "t_off=60*10**-6\n", + "P_off=(I_CS*t_off/2-(I_CS/60)*10**6*(t_off**2)/3)*((V_CC/75)*10**6*t_off) #energy during turn off\n", + "P_t=P_on+P_off #total energy\n", + "P_avg=300.0\n", + "f=P_avg/P_t\n", + "\n", + "#Results\n", + "print(\"Allowable switching frequency = %.2f Hz\" %f)\n", + "#in book ans is: f=1123.6 Hz. The difference in results due to difference in rounding of of digits" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Allowable switching frequency = 1125.00 Hz\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit