From 79c59acc7af08ede23167b8455de4b716f77601f Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Thu, 11 Jun 2015 17:31:11 +0530 Subject: add books --- sample_notebooks/NishthaRani/CH8(1).ipynb | 378 ++++++++++++++++++++++++++++++ 1 file changed, 378 insertions(+) create mode 100755 sample_notebooks/NishthaRani/CH8(1).ipynb (limited to 'sample_notebooks/NishthaRani/CH8(1).ipynb') diff --git a/sample_notebooks/NishthaRani/CH8(1).ipynb b/sample_notebooks/NishthaRani/CH8(1).ipynb new file mode 100755 index 00000000..cae42a72 --- /dev/null +++ b/sample_notebooks/NishthaRani/CH8(1).ipynb @@ -0,0 +1,378 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:93168f4fdcda81fb8a5194b03c33462ec0c810df117544b3470474e9e7f2fcbf" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Ch-8 : Control of DC Drivers" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.12.4: p-275" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Motor torque \n", + "import numpy as np \n", + "#given data :\n", + "Vs_rms=230 # in volts\n", + "N=1200 # in rpm\n", + "Ia=40 # in A\n", + "Ra=0.25 #in ohm\n", + "Ka_fi1=0.182 # in V/rpm\n", + "Ka_fi=(0.182*60)/(2*np.pi) \n", + "alfa_a=30 \n", + "T=Ka_fi*Ia \n", + "print \"(a) Motor torque, T =\",round(T,2),\"N-m \"\n", + "Ea=((2*np.sqrt(2)*Vs_rms)/np.pi)*(np.cos(alfa_a*np.pi/180)) \n", + "N=(Ea-(Ra*Ia))/Ka_fi1 \n", + "print \"(b) Speed of the motor, N =\",round(N,2),\"rpm\"\n", + "Is_rms=Ia \n", + "PF=(Ea*Ia)/(Vs_rms*Is_rms) \n", + "print \"(c) Power factor, PF =\",round(PF,2),\"lagging\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Motor torque, T = 69.52 N-m \n", + "(b) Speed of the motor, N = 930.39 rpm\n", + "(c) Power factor, PF = 0.78 lagging\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.13.2: p-278" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Delay Angel of Armature,No load speed and speed regulation\n", + "import numpy as np\n", + "#given data :\n", + "VL_rms=208 # in volts\n", + "Kv=1.2 # in V/A-rad/sec\n", + "Vs_rms=round(VL_rms/np.sqrt(3),2) \n", + "Vm=np.sqrt(2)*Vs_rms \n", + "Rf=240 # in ohm\n", + "Ra=0.25 # in ohm\n", + "alfa_f=0 # in degree\n", + "V=280 # in volts\n", + "Twenty_HP=20*746 #in watt\n", + "Ia=Twenty_HP/V\n", + "Ef=round((3*np.sqrt(3)*Vm*np.cos(alfa_f*np.pi/180))/np.pi,2) \n", + "N=1800 \n", + "w=(N*2*np.pi)/60 \n", + "If=Ef/Rf \n", + "Eg=Kv*w*If \n", + "Ea=round(Eg+(Ia*Ra),2) \n", + "alfa_a=(np.arccos((Ea*np.pi)/(3*np.sqrt(3)*Vm))) \n", + "print \"(a) Delay Angel Of Armature, alfa_a = \",round(alfa_a,2),\"degree\"\n", + "Ia1=(Ia*10)/100\n", + "Eg_noL=Ea-(Ia1*Ra) \n", + "w_0=(Eg_noL/(1.2*1.17)) # rad/sec\n", + "N_0=(w_0*60)/(2*np.pi) \n", + "print \"(b) NO load speed at alfa|_a =\",round(N_0,2),\"rpm\"\n", + "SR=((N_0-N)/N)*100 \n", + "print \"(c) Speed Regulation, SR =\",round(SR,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Delay Angel Of Armature, alfa_a = 0.14 degree\n", + "(b) NO load speed at alfa|_a = 1882.25 rpm\n", + "(c) Speed Regulation, SR = 4.57 %\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.14.3 - P : 284" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#alpha, speed and delay angle\n", + "from __future__ import division\n", + "import numpy as np\n", + "#given data :\n", + "v1=208 #\n", + "vsrms=v1/np.sqrt(3) #\n", + "n=1000 #rpm\n", + "w=n*(np.pi/30) #in rad/s\n", + "ang=0 #\n", + "ef=((3*np.sqrt(3)*np.sqrt(2)*vsrms*np.cos(ang))/np.pi) #in volts\n", + "rf=140 #in ohms\n", + "If=ef/rf #in amperes\n", + "t=120 #N-m\n", + "kv=1.2 #\n", + "ia=(t)/(kv*If) #in amperes\n", + "eg=kv*If*w #in volts\n", + "ra=0.25 #in ohms\n", + "ea=eg+(ia*ra) #\n", + "alpha=np.arccos((ea*np.pi)/(3*np.sqrt(3)*np.sqrt(2)*vsrms))\n", + "print \"(a) alpha is\",round(alpha,2),\"degree\"\n", + "rf=140 #in ohms\n", + "If=ea/rf #in amperes\n", + "t=120 #N-m\n", + "kv=1.2 #\n", + "ia=(t)/(kv*If) #in amperes\n", + "ra=0.25 #in ohms\n", + "eg=ea-(ia*ra) #\n", + "w=(eg/(kv*If)) #in rad/s\n", + "N=w*(30/np.pi) #rpm\n", + "print \"(b) Speed is\",round(N,2),\"rpm\"\n", + "n1=1000 #rpm\n", + "w=n1*(np.pi/30) #in rad/s\n", + "v1=208 #\n", + "vsrms=v1/np.sqrt(3) #\n", + "w1=(1800*(np.pi/30)) #\n", + "n=1800 #rpm\n", + "ang=0 #\n", + "T=120 #n-m\n", + "alphas=0 #\n", + "ang=0 #\n", + "ea=((3*np.sqrt(3)*np.sqrt(2)*vsrms*np.arccos(ang))/np.pi) #in volts\n", + "rf=140 #in ohms\n", + "If=ea/rf #in amperes\n", + "t=120 #N-m\n", + "kv=1.2 #\n", + "ia=(t)/(kv*If) #in amperes\n", + "ra=0.25 #in ohms\n", + "eg=ea-(ia*ra) #\n", + "if1=eg/(kv*w1) #in amperese\n", + "ef1=if1*rf #in volts\n", + "alphaf=np.arccos((ef1*np.pi)/(3*np.sqrt(3)*120*np.sqrt(2))) \n", + "print \"(c) Delay angle is\",round(alphaf,2),\"degree\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) alpha is 0.34 degree\n", + "(b) Speed is 1058.39 rpm\n", + "(c) Delay angle is 0.3 degree\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.15.1: p-296" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Firing angle to keep the motor current and Power fed back \n", + "from numpy import pi, sqrt, arccos\n", + "#given data :\n", + "Vs_rms=260 # in volts\n", + "Ia=40 # in A\n", + "Eg=192 #in volts\n", + "kv=0.182 # in V/rpm\n", + "Ra=0.3 # in ohm\n", + "Ea=Eg+(Ia*Ra) \n", + "alfa_a=arccos((Ea*pi)/(2*Vs_rms*sqrt(2))) \n", + "print \"(a) Firing angle to keep motor current, alfa_a =\",round(alfa_a,2),\"degree\"\n", + "Ea1=-Eg+(Ia*Ra) \n", + "alfa_b=arccos((Ea1*pi)/(2*Vs_rms*sqrt(2))) \n", + "print \"(b) Firing angle, alfa_b =\",round(alfa_b,2),\"degree\"\n", + "Ia=40 # in A\n", + "Eg=192 #in volts\n", + "Ra=0.3 # in ohm\n", + "Ea=-Eg+(Ia*Ra) \n", + "P=abs(Ea)*Ia \n", + "print \"(c) Power fed back, P =\",round(P,2),\"Watt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Firing angle to keep motor current, alfa_a = 0.51 degree\n", + "(b) Firing angle, alfa_b = 2.45 degree\n", + "(c) Power fed back, P = 7200.0 Watt\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.15.3: p-312" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# torque developed,speed and input power factor\n", + "from numpy import pi, sqrt, arccos, cos\n", + "#given data :\n", + "v=208 #in volts\n", + "f=50 #in Hz\n", + "ra=0.5 #in ohms\n", + "rf=345 #in ohms\n", + "kv=0.71 #in V/A-rad/sec\n", + "alpha=45 #in degree\n", + "ia=55 #in amperes\n", + "If=((2*sqrt(2)*v*cos(0))/(pi*rf)) #in amperes\n", + "t=kv*If*ia #in N/m\n", + "print \"(a) Torque is\",round(t,2),\"N/m\"\n", + "eb=((2*sqrt(2)*v*cos(alpha))/pi)-(ia*ra) #in volts\n", + "w=eb/(kv*If) #in rad/sec\n", + "N=w/(2*pi) #rps\n", + "print \"(b) speed is\",round(N*60,2),\"rpm\"\n", + "#speed is calculated wrong in the textbook\n", + "ea=132.4 #in volts\n", + "ef=187.3 #in volts\n", + "pi=(ea*ia)+(ef*If) #in watts\n", + "Isrms=sqrt((ia)**2+(If)**2) #in amperes\n", + "va1=Isrms*v #in VA\n", + "Pf=pi/va1 #\n", + "print \"(d) power factor is\",round(Pf,2), \"lagging\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Torque is 21.2 N/m\n", + "(b) speed is 1756.17 rpm\n", + "(d) power factor is 0.65 lagging\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.16.1: p-318" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# No load speed ,firing angle ,Power Factor and speed regulation\n", + "from numpy import pi, sqrt, arccos, cos\n", + "#given data :\n", + "Ra=0.075 #in ohm\n", + "alfa1=0 # in degree\n", + "alfa2=30 # in degree\n", + "VL_rms=480 # in volts\n", + "Ka_fi=0.3 # in V/rms\n", + "Vs_rms=round(VL_rms/sqrt(3),2) \n", + "Vm=sqrt(2)*Vs_rms \n", + "Ea=round((3*sqrt(3)*Vm*cos(alfa1))/pi) \n", + "Ea1=((3*sqrt(3)*Vm*cos(alfa2))/pi) \n", + "Ia=(10/100)*160 # in A\n", + "N_0=(Ea-Ia*Ra)/Ka_fi \n", + "N_30=(Ea1-Ia*Ra)/Ka_fi \n", + "print \"part (a)\"\n", + "print \"No load speed at alfa=0 degree is\",round(N_0,2),\"rpm\"\n", + "print \"No load speed at alfa=30 degree is\",round(N_30,2),\"rpm\"\n", + "print \"part (b)\"\n", + "Ia=160 # in A\n", + "N=1800 # in rpm\n", + "Eg=540 # in volts\n", + "Ea=(Eg+(Ia*Ra)) \n", + "alfa=(arccos((Ea*pi)/(3*sqrt(3)*Vm))) \n", + "print \"The firng angel, alfa is\",round(alfa,2),\"degree\"\n", + "Is_rms=sqrt(2/3)*Ia \n", + "Sva=3*Vs_rms*Is_rms \n", + "PF=(Ea*Ia)/(Sva) \n", + "print \"(c) Power Factor, PF =\",round(PF,2),\"lagging\"\n", + "Ra=0.075 #in ohm\n", + "Ia=160 # in A\n", + "Ia1=16 # in A\n", + "Eg=540 # in volts\n", + "Ka_fi=0.3 # in V/rms\n", + "N=1800 # in rpm\n", + "Ea=(Eg+(Ia*Ra)) \n", + "Eg1=Ea-(Ia1*Ra) \n", + "N_0=Eg1/Ka_fi \n", + "SR=((N_0-N)/N)*100 \n", + "print \"(d) Speed Regulation, SR =\",round(SR,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part (a)\n", + "No load speed at alfa=0 degree is 2156.0 rpm\n", + "No load speed at alfa=30 degree is 329.3 rpm\n", + "part (b)\n", + "The firng angel, alfa is 0.55 degree\n", + "(c) Power Factor, PF = 0.81 lagging\n", + "(d) Speed Regulation, SR = 2.0 %\n" + ] + } + ], + "prompt_number": 10 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit