From 3e98a57197160c6974caac69fe8e57f9d4d5b22e Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Sat, 20 Feb 2016 23:30:03 +0600 Subject: Added(A)/Deleted(D) following books A sample_notebooks/MohitChauhan/Chapter_5.ipynb --- sample_notebooks/MohitChauhan/Chapter_5.ipynb | 284 ++++++++++++++++++++++++++ 1 file changed, 284 insertions(+) create mode 100644 sample_notebooks/MohitChauhan/Chapter_5.ipynb (limited to 'sample_notebooks/MohitChauhan') diff --git a/sample_notebooks/MohitChauhan/Chapter_5.ipynb b/sample_notebooks/MohitChauhan/Chapter_5.ipynb new file mode 100644 index 00000000..d93530be --- /dev/null +++ b/sample_notebooks/MohitChauhan/Chapter_5.ipynb @@ -0,0 +1,284 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:40246af5736342db0b706a17990458bf898d0d1dfd632473c65bf3a52df25d34" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 05 - Bipolar Junction Transistors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.1 : Page No - 243" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_C= 5.10;# in mA\n", + "I_E= 5.5;# in mA\n", + "alpha= I_C/I_E;\n", + "alpha_dc= alpha;\n", + "print \"The common-base d.c. current gain = %0.2f \" %alpha_dc\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The common-base d.c. current gain = 0.93 \n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.2 : Page No - 243" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math \n", + "# Given data\n", + "alpha= 0.987;\n", + "I_E= 10.;# in mA\n", + "# Formula alpha= I_C/I_E;\n", + "I_C= alpha*I_E;# in mA\n", + "I_B= I_E-I_C;# in mA\n", + "print \"The base current = %0.2f mA \" %I_B\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 0.13 mA \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.4 : Page No - 249" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "alpha= 0.967;\n", + "I_E= 10.;# in mA\n", + "# Formula alpha= I_C/I_E;\n", + "I_C= alpha*I_E;# in mA\n", + "I_B= I_E-I_C;# in mA\n", + "print \"The collector current = %0.2f mA\" %I_C\n", + "print \"The base current = %0.2f mA \" %I_B\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The collector current = 9.67 mA\n", + "The base current = 0.33 mA \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.5 : Page No - 250" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "Beta= 100.;\n", + "I_E= 10.;# in mA\n", + "alpha= Beta/(1+Beta);\n", + "print \"The value of alpha = %0.2f\" %alpha\n", + "# Formula alpha= I_C/I_E;\n", + "I_C= alpha*I_E;# in mA\n", + "I_B= I_E-I_C;# in mA\n", + "print \"The collector current = %0.1f mA \" %I_C\n", + "print \"The base current = %0.1f mA\" %I_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of alpha = 0.99\n", + "The collector current = 9.9 mA \n", + "The base current = 0.1 mA\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.6 : Page No - 258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "alpha= 0.950;\n", + "Beta= alpha/(1.-alpha);\n", + "print \"For alpha = 0.950, the value of beta = %0.f\" %Beta\n", + "Beta= 100.;\n", + "alpha= Beta/(1.+Beta);\n", + "print \"For beta = 100, the value of alpha = %0.2f\" %alpha\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For alpha = 0.950, the value of beta = 19\n", + "For beta = 100, the value of alpha = 0.99\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.7 : Page No - 259" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_E= 10.;# in mA\n", + "Beta= 100.;\n", + "alpha= Beta/(1.+Beta);\n", + "# Formula alpha= I_C/I_E;\n", + "I_C= alpha*I_E;# in mA\n", + "I_B= I_E-I_C;# in mA\n", + "print \"The base current = %0.3f mA \" %I_B\n", + "print \"The collector current = %0.3f mA\" %I_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 0.099 mA \n", + "The collector current = 9.901 mA\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example No -5.8 : Page No - 263" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "%matplotlib inline\n", + "import math\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "V_CC= 12.;# in V\n", + "R_C= 3.;# in kohm\n", + "V_CE= np.linspace(0,12,num=120);# in V\n", + "I_C= np.zeros(120)\n", + "for i in range(0,120):\n", + "\tI_C[i]= (V_CC-V_CE[i])/R_C;# in mA\n", + "\n", + "plt.plot(V_CE,I_C);\n", + "plt.xlabel(\"V_CE in volts\")\n", + "plt.ylabel(\"I_C in mA\")\n", + "plt.title(\"DC load line\")\n", + "plt.show()\n", + "print \"DC load line shown in figure.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUVOf9BvBnCEZFlMVUiICVgAuDCIMaNHUZJG4IlBqr\nYBo3bIAcY7BJmmj8BT2xLjWJSzUGeyLEngQwpkaCSFJrxuhBaqK4FEyBRCKLYFyQGCQq3t8fdG5n\nYMAB5s6d5fmcwynM3LnznZ52Hr/ve9/3KgRBEEBERATAQe4CiIjIcjAUiIhIxFAgIiIRQ4GIiEQM\nBSIiEjEUiIhIxFAg+q+MjAxMmDBBknM7ODjgu+++M/icWq3Ge++9BwD44IMPMG3aNElqIDIGQ4Gs\n0uDBg+Hk5IR+/frBzc0Nv/rVr5CWlobWy25OnjyJyMhIuLm5oX///ggLC0NGRoY8RbdDoVBAoVAA\nAJ5++ml89tlnMldE9oyhQFZJoVAgNzcXDQ0NuHTpEl599VVs3LgRCQkJ4jEnTpxAREQEwsPD8e23\n3+LatWvYuXMn8vPzZaycyLIxFMjq9e3bF9HR0cjOzsb777+PkpISAMDLL7+MhQsX4uWXX4a7uzsA\nIDQ0FFlZWUadt6CgAGPGjIGrqysef/xxnDhxQnwuPT0dSqUS/fr1g5+fH3bt2qX32k2bNmHgwIHw\n9vbG7t27jf4srYewHBwckJaWhqFDh8LNzQ1Lly7VO3737t1QKpVwd3fH9OnTcenSJaPfi8gQhgLZ\njDFjxsDb2xvHjh1DY2MjCgsLMXv27C6d6/r165g5cyZSUlJw/fp1/OEPf8DMmTNx/fp1AICHhwcO\nHjyIhoYGpKenY/ny5SgqKgIA5Ofn46233sLhw4dRWlqKw4cPd+tzHTx4EF9//TXOnTuHvXv3isNL\nBw4cwPr167F//35cvXoVEyZMQHx8fLfei4ihQDZl4MCBuH79Om7cuIH79+/j0Ucf7dJ5Dh48iGHD\nhuHpp5+Gg4MD4uLiMHz4cHz66acAgMjISPj6+gIAJk6ciKlTp+LYsWMAgL1792Lx4sVQKpVwcnLC\nmjVruvWZXn31VfTr1w8+Pj4IDw/H2bNnAQDvvvsuVqxYgWHDhsHBwQErVqzAmTNnUFlZ2a33I/vG\nUCCbUlVVBXd3d7i7u8PBwQGXL1/u0nlqamowaNAgvcd++ctfoqamBgBw6NAhjB07Fv3794ebmxvy\n8vJw7do1AMDly5fh4+Mjvq71eTrL09NT/N3JyQm3bt0CAHz//fd44YUX4ObmJk6kA0B1dXW33o/s\nG0OBbMZXX32FmpoajB8/Hr1798a4ceOwb9++Lp3Ly8sL33//vd5j33//Pby8vPDzzz/jqaeewh//\n+EdcuXIFN27cQGRkpHjl06OPPqo3ti/VOP+gQYOwa9cu3LhxQ/z56aefMHbsWEnej+wDQ4GslvZL\nuKGhAbm5uYiPj8czzzyDwMBAAMCf//xnZGRk4M033xT/FX/27Fmjxt1nzJiB0tJSZGZm4t69e8jO\nzsY333yDqKgo3LlzB3fu3MEjjzwCBwcHHDp0CJ9//rn42jlz5iAjIwMXLlxAY2Njt4ePWn9m7edO\nSkrCunXrxIn1mzdv4qOPPjLZe5F9YiiQ1YqOjka/fv0waNAgrF+/Hi+++CLS09PF58eNG4cjR47g\nyJEj8PPzQ//+/ZGYmIiZM2caPJ/ueoH+/fsjNzcXb731Fh555BG8+eabyM3Nhbu7O/r27Ytt27Zh\nzpw5cHd3R2ZmJn7961+L55k+fTpSUlIwefJkDB06FBEREeJ5H0S3Bu3f7T0fGxuLV155BXFxcXBx\ncUFQUBDXOFC3Kcxxk53m5maMHj0a3t7e4kSdrmXLluHQoUNwcnJCRkYGVCqV1CUREZEBZukUtm7d\nCqVSafBfS3l5eSgvL0dZWRl27dqF5ORkc5REREQGSB4KVVVVyMvLw5IlS9psQQAAOTk5WLBgAQAg\nLCwM9fX1qKurk7osIiIyQPJQWL58OTZt2gQHB8NvVV1drXf5nre3N6qqqqQui4iIDJA0FHJzczFg\nwACoVCqDXYJW6+eMnZQjIiLTcpTy5AUFBcjJyUFeXh6amprQ0NCA+fPnY8+ePeIxXl5eeiswq6qq\n4OXl1eZcffr4o7HxWynLJSKyOX5+figvLzf+BYKZaDQaISoqqs3jBw8eFGbMmCEIgiCcOHFCCAsL\nM/h6AMIHHwjCgAGCsGKFIDQ1SVqu2aWmpspdgqRs+fPZ8mcTBH4+a9fZr3mzrlPQDgulpaUhLS0N\nQMseMo899hj8/f2RmJiId955p93Xz5sHnD0LXLgAhIYCX31llrKJiOyGpMNHuiZNmoRJkyYBABIT\nE/We2759u9Hn8fQE/v53ICsLiIoCEhKA1FSgZ0+TlktEZJesckWzQgHEx/+vaxg1Cvj6a7mr6h61\nWi13CZKy5c9ny58N4OezN2ZZ0WwKCoXC4BVMgtDSNaSksGsgImqtve/O9lhlp6CrddfAuQYioq6z\n+lDQ0s41rFrVMtewciXw889yV0VEZF1sJhQA25xrICIyJ5sKBS1t1/Daa8DMmS3/ya6BiOjBbDIU\nAP2uoaSkpWvgXAMRUcdsNhS0dLsGzjUQEXXM5kMB4BVKRETGsotQ0Gp9hRLnGoiI9NlVKACG5xp4\nhRIRUQu7CwUtbdewciWvUCIi0rLbUABaugbtzqvFxewaiIjsOhS0PD2B/fvZNRARMRT+S7dr4FwD\nEdkrhkIrXA1NRPaMoWAAr1AiInvFUOhA666Bq6GJyNYxFB6AO68SkT2RPBSampoQFhaGkJAQKJVK\nrFixos0xGo0GLi4uUKlUUKlUWLt2rdRldRrnGojIHjhK/Qa9evXCF198AScnJ9y7dw/jx4/H8ePH\nMX78eL3jJk2ahJycHKnL6RZt1xAeDiQnt3QNGRnA6NFyV0ZEZBpmGT5ycnICANy5cwfNzc1wd3dv\nc4yV3CoaAOcaiMh2mSUU7t+/j5CQEHh4eCA8PBxKpVLveYVCgYKCAgQHByMyMhIlJSXmKKtbtF3D\nuXPAN99w51Uisg1mCQUHBwecOXMGVVVV+PLLL6HRaPSeDw0NRWVlJc6ePYvnn38esbGx5ijLJDw8\ngI8/5s6rRGQbFIKZx23eeOMN9O7dGy+99FK7x/j6+uLUqVN6w0wKhQKpqani32q1Gmq1WspSO622\ntmWuoayMcw1EJA+NRqP3D+81a9Z0anhe8lC4evUqHB0d4erqitu3b2PatGlITU1FRESEeExdXR0G\nDBgAhUKBkydPYs6cOaioqNAvVKGwinkHQQCysoCUFCAhAUhNBXr2lLsqIrJXnf3ulPzqo8uXL2PB\nggW4f/8+7t+/j2eeeQYRERFIS0sDACQmJmLfvn3YuXMnHB0d4eTkhKysLKnLkgyvUCIia2b24aOu\nspZOQZcgAJmZwPLlwJIlwOuvs2sgIvPq7HcnVzRLiPdrICJrw1AwA+39GriugYgsHUPBTFrvocR1\nDURkiRgKZqZdDa1d18CugYgsCUNBBuwaiMhSMRRk1Lpr4GpoIpIbQ0FmvMsbEVkShoKF4P0aiMgS\nMBQsCLsGIpIbQ8ECsWsgIrkwFCwUuwYikgNDwcJpu4aVK9k1EJH0GApWQHcPJXYNRCQlhoIV4VwD\nEUmNoWBlONdARFJiKFip1l0D91AiIlNgKFgx7qFERKbGULAB3HmViEyFoWAj2DUQkSlIGgpNTU0I\nCwtDSEgIlEolVqxYYfC4ZcuWYciQIQgODkZRUZGUJdk87rxKRN0haSj06tULX3zxBc6cOYNz587h\niy++wPHjx/WOycvLQ3l5OcrKyrBr1y4kJydLWZJd0O0aeG9oIuoMyYePnJycAAB37txBc3Mz3N3d\n9Z7PycnBggULAABhYWGor69HXV2d1GXZBe29obkamoiMJXko3L9/HyEhIfDw8EB4eDiUSqXe89XV\n1fDx8RH/9vb2RlVVldRl2Q3d1dDsGojoQRylfgMHBwecOXMGN2/exLRp06DRaKBWq/WOEQRB72+F\nQmHwXKtXrxZ/V6vVbc5D7dN2DZmZLV3DkiXA668DPXvKXRkRmZJGo4FGo+ny6xVC629kCb3xxhvo\n3bs3XnrpJfGxpKQkqNVqxMXFAQCGDx+Oo0ePwsPDQ79QhaJNeFDX1NYCSUlAeTmQng6MGSN3RUQk\nlc5+d0o6fHT16lXU19cDAG7fvo1//OMfUKlUesfExMRgz549AIDCwkK4urq2CQQyLW3X8NprXNdA\nRPokDYXLly9j8uTJCAkJQVhYGKKjoxEREYG0tDSkpaUBACIjI/HYY4/B398fiYmJeOedd6Qsif6L\n6xqIyBCzDh91B4ePpCMIQFYWkJICJCQAqamcayCyFRY1fETWgV0DEWkxFEjEPZSIiKFAelp3DVzX\nQGRfGApkEO8NTWSfGArULq6GJrI/DAV6IN11DewaiGwbQ4GMwntDE9kHhgJ1CucaiGwbQ4E6TXeu\ngV0DkW1hKFCXsWsgsj0MBeoWdg1EtoWhQCbRumvgamgi68RQIJPR7Rq4hxKRdWIokMlxDyUi68VQ\nIElwDyUi68RQIEnxCiUi68JQIMlxDyUi68FQILPR7qHEroHIcjEUyKy4roHIskkeCpWVlQgPD0dg\nYCBGjBiBbdu2tTlGo9HAxcUFKpUKKpUKa9eulboskpl2rkG78yqvUCKyDAqhM3d07oLa2lrU1tYi\nJCQEt27dwqhRo/DJJ58gICBAPEaj0eDtt99GTk5O+4V28ubTZD1qa4HkZKC0FMjIAMaMkbsiItvR\n2e9OyTsFT09PhISEAACcnZ0REBCAmpqaNsfxC99+cV0DkeUw65xCRUUFioqKEBYWpve4QqFAQUEB\ngoODERkZiZKSEnOWRRag9boGroYmkoejud7o1q1bmD17NrZu3QpnZ2e950JDQ1FZWQknJyccOnQI\nsbGxKC0tbXOO1atXi7+r1Wqo1WqJqyZz03YNWVktXUNCApCaCvTsKXdlRNZBo9FAo9F0+fWSzykA\nwN27dxEVFYUZM2YgJSXlgcf7+vri1KlTcHd3Fx/jnIL90c41lJW1zDWMHi13RUTWx+LmFARBQEJC\nApRKZbuBUFdXJxZ98uRJCIKgFwhkn7gamsj8JO8Ujh8/jokTJ2LkyJFQKBQAgHXr1uHSpUsAgMTE\nROzYsQM7d+6Eo6MjnJyc8Pbbb2Ps2LH6hbJTsGu1tUBSElBezq6BqDM6+91pluEjU2AokCAAmZnA\n8uWcayAylsUNHxGZSuv7NXA1NJHpdSkULl26hE2bNpm6FiKjcDU0kXSMDoUrV65gx44dGD9+PNRq\nNWpra6Wsi6hDvF8DkTQ6XKfQ0NCAv//978jMzER5eTliY2Nx8eJFVFdXm6s+og7prmuYOZNzDUTd\n1eFEc+/evTFlyhSsXLlSvBrI19cXFy9eNFuBWpxopgfhugaitkw60bx+/XrU1dXhueeew4YNG/Dt\nt992u0AiqXCugaj7OgyFlJQU/Otf/8JHH32E5uZmxMbG4vLly9i4caPBbSiI5MY9lIi6p9PrFM6f\nP4/MzExkZ2ebtXPg8BF1liC0zDWkpHCugeyXpIvXGhoacO/ePfEN+vfv3/kKu4ihQF1VV9cy1/Cf\n//B+DWR/JAmFtLQ0pKamomfPnnBwcBDf6Lvvvut6pZ3EUKDuYNdA9kqSUPD390dhYSEeeeSRbhXX\nHQwFMgVeoUT2RpJtLh577DH07t27y0URWQruvErUMaM6hdOnT2PhwoUYN24cHn744ZYXKhTYtm2b\n5AVqsVMgU+POq2QPOvvdadSd15599lk8+eSTCAoKgoODAwRBELfBJrJWnp7A/v0tO6/OnAksWQK8\n/jrnGsi+GdUpqFQqFBUVmaOedrFTICnpzjWkp/MKJbIdkswpzJgxA2lpabh8+TKuX78u/hDZCt3V\n0FFRXA1N9suoTmHw4MFthot4SSrZKnYNZEt45zUiE+C6BrIVvPMakQlwDyWyV5KGQmVlJcLDwxEY\nGIgRI0a0ewnrsmXLMGTIEAQHB8s+oU2kSzvXsGoV5xrIPkgaCj169MDmzZtRXFyMwsJC7NixAxcu\nXNA7Ji8vD+Xl5SgrK8OuXbuQnJwsZUlEncaugeyJUesUAKC6uhoVFRVobm4W1ylMnDixw9d4enrC\n09MTAODs7IyAgADU1NQgICBAPCYnJwcLFiwAAISFhaG+vh51dXXw8PDoyuchkoy2a8jMbOkauK6B\nbJFRofDKK68gOzsbSqUSDz30kPj4g0JBV0VFBYqKihAWFqb3eHV1NXx8fMS/vb29UVVVxVAgi6RQ\nAPPmAZMnt6yGHjWKq6HJthgVCvv378d//vMf9OziP4lu3bqF2bNnY+vWrXB2dm7zfOuZ8fZWS69e\nvVr8Xa1WQ61Wd6keou5qvRqaVyiRpdBoNNBoNF1+vVGXpM6YMQN79+5F3759O/0Gd+/eRVRUFGbM\nmIGUlJQ2zyclJUGtViMuLg4AMHz4cBw9erRNp8BLUslScedVsmSS7H3Uu3dvhISEICIiQuwWjNkQ\nTxAEJCQkQKlUGgwEAIiJicH27dsRFxeHwsJCuLq6cuiIrIp2riEri10DWT+jOoWMjIy2L1QoxAni\n9hw/fhwTJ07EyJEjxSGhdevW4dKlSwCAxMREAMDSpUuRn5+PPn36ID09HaGhoQbfj50CWTp2DWRp\nuKKZSGZcDU2WxKSh8Nvf/hYfffQRgoKCDL7RuXPnulZlFzAUyNqwayBLYNJQqKmpwcCBA1FRUWHw\n+cGDB3e2vi5jKJA1YtdAcuPwEZEF0nYNpaUtXQN3XiVz4YZ4RBao9f0aeG9oslQMBSIz0a6GPnsW\nKC5uWQ399ddyV0Wkr8NQuHLlCoqLi9s8XlxcjB9++EGyoohsmXY19MqVLesa2DWQJekwFJ5//nlc\nvXq1zePXrl3DCy+8IFlRRLZOt2soKWHXQJajw4nmUaNG4dSpUwafCwwMNNhFSIUTzWSrdK9Q4s6r\nZGomnWj+8ccf233u7t27xldFRO3SvV8D5xpIbh2Ggr+/Pw4ePNjm8by8PPj5+UlWFJE94lwDWYIO\nh49KS0sRFRWFJ554AqNGjYIgCDh16hQKCgqQm5uLYcOGma9QDh+RHdFdDZ2eznUN1HUmX7zW1NSE\nDz/8UJw/CAwMxLx589CrV6/uVdpJDAWyN1wNTaYgy4rmcePG4cSJE909TYcYCmSvuBqaukOWFc1N\nTU2mOA0RGaBdDb1qVctq6JUrOddA0uGKZiIroHuF0oULQGgor1AiaTAUiKyIbtfAK5RICgwFIiuj\n2zVwNTSZmklCYc+ePaY4DRF1grZr4LoGMqUOrz5ydnYW763c5oUKBRoaGiQrzND78eojIsNqa4Gk\nJKC8nHd5I30mvfro1q1b+PHHHw3+GBsIixcvhoeHh8FbegKARqOBi4sLVCoVVCoV1q5da3TxRNSC\nq6HJVCSfU1i0aBHy8/M7PGbSpEkoKipCUVERVq1aJXVJRDaJO6+SKUgeChMmTICbm1uHx3BYiMh0\nONdA3SH71UcKhQIFBQUIDg5GZGQkSkpK5C6JyOqxa6CucpS7gNDQUFRWVsLJyQmHDh1CbGwsSktL\nDR67evVq8Xe1Wg21Wm2eIomslLZryMpq6Rq4h5Lt02g00Gg0XX69SfY+epCKigpER0fj/PnzDzzW\n19cXp06dgru7u97jvPqIqHt0d17lFUr2Q5a9j7qjrq5OLPjkyZMQBKFNIBBR92m7htdea+kauIcS\nGSL58FF8fDyOHj2Kq1evwsfHB2vWrBHv2paYmIh9+/Zh586dcHR0hJOTE7KysqQuichuaVdDh4cD\nzz3XsocSd14lXWYZPjIFDh8RmZYgAJmZwPLlvDe0LbO64SMikgevUCJDGApEdo7rGkgXQ4GI9LqG\n4mJ2DfaMoUBEIu6hRAwFItLDuQb7xlAgIoO4rsE+MRSIqF2G7g391VdyV0VSYigQ0QPp3hs6Kopd\ngy1jKBCRUdg12AeGAhF1CrsG28ZQIKJOY9dguxgKRNRlrbsGrmuwfgwFIuoW3a6B6xqsH0OBiEyi\n9R5KnGuwTgwFIjIZ3dXQFy6wa7BGDAUiMjmuhrZeDAUikkTrK5TYNVgHhgIRSap118ArlCwbQ4GI\nJMcrlKyH5KGwePFieHh4ICgoqN1jli1bhiFDhiA4OBhFRUVSl0REMuFd3iyf5KGwaNEi5Ofnt/t8\nXl4eysvLUVZWhl27diE5OVnqkohIRrxfg2WTPBQmTJgANze3dp/PycnBggULAABhYWGor69HXV2d\n1GURkcy4rsEyyT6nUF1dDR8fH/Fvb29vVFVVyVgREZlL63UN3ENJfo5yFwAAgiDo/a1QKAwet3r1\navF3tVoNtVotYVVEZC7ariErq2UPpSVLgNdfB3r2lLsy66PRaKDRaLr8eoXQ+htZAhUVFYiOjsb5\n8+fbPJeUlAS1Wo24uDgAwPDhw3H06FF4eHjoF6pQtAkPIrI9tbVAcjJQVgZkZACjR8tdkXXr7Hen\n7MNHMTEx2LNnDwCgsLAQrq6ubQKBiOwHr1CSl+SdQnx8PI4ePYqrV6/Cw8MDa9aswd27dwEAiYmJ\nAIClS5ciPz8fffr0QXp6OkJDQ9sWyk6ByO6wa+i+zn53mmX4yBQYCkT2SRCAzExg+XLONXSF1Q0f\nERF1hOsazIuhQERWgTuvmgdDgYisBu8NLT2GAhFZndb3hmbXYDoMBSKySuwapMFQICKrxq7BtBgK\nRGT1eJc302EoEJHN4Gro7mMoEJFN0V3XUFzMrqGzGApEZJM8PYH9+3m/hs5iKBCRzWp9vwZ2DQ/G\nUCAim8fV0MZjKBCRXeAVSsZhKBCRXWndNfAKJX0MBSKyO7pdA3de1cdQICK71XpdA+caGApEZOda\nX6Fk73soMRSIiMA9lLQYCkRE/8UrlMwQCvn5+Rg+fDiGDBmCjRs3tnleo9HAxcUFKpUKKpUKa9eu\nlbokIqIO2fMeSgqhM3d07qTm5mYMGzYMhw8fhpeXF8aMGYPMzEwEBASIx2g0Grz99tvIycnpuNBO\n3nyaiMgUamuBpCSgvBzIyABGj5a7os7p7HenpJ3CyZMn4e/vj8GDB6NHjx6Ii4vDgQMH2hzHL3si\nslSt91Cy9a5B0lCorq6Gj4+P+Le3tzeqq6v1jlEoFCgoKEBwcDAiIyNRUlIiZUlERJ1mTzuvOkp5\ncoVC8cBjQkNDUVlZCScnJxw6dAixsbEoLS01eOzq1avF39VqNdRqtYkqJSJ6MG3XkJnZ0jUsWQK8\n/jrQs6fclf2PRqOBRqPp8uslnVMoLCzE6tWrkZ+fDwBYv349HBwc8Morr7T7Gl9fX5w6dQru7u76\nhXJOgYgsSG0tkJwMlJUB6enAmDFyV2SYRc0pjB49GmVlZaioqMCdO3eQnZ2NmJgYvWPq6urEgk+e\nPAlBENoEAhGRpdHdQ8mW1jVIGgqOjo7Yvn07pk2bBqVSiblz5yIgIABpaWlIS0sDAOzbtw9BQUEI\nCQlBSkoKsrKypCyJiMhkWq9rsIXV0JIOH5kSh4+IyJIJApCVBaSkAAkJQGqqZcw1WNTwERGRvbCV\n1dAMBSIiE7L21dAMBSIiE7PmdQ0MBSIiibReDW0NVygxFIiIJNT6fg2W3jUwFIiIzKD1vaEttWtg\nKBARmYk1XKHEUCAiMjNL7hoYCkREMrDUroGhQEQkI0vrGhgKREQys6SugaFARGQhLKFrYCgQEVkQ\nbddw7hzwzTfm33mVoUBEZIE8PICPPwZWrTLv/RoYCkREFkqOuQaGAhGRhWs91yDlzqsMBSIiK6Db\nNUi58ypDgYjIirTeedXUXYPkoZCfn4/hw4djyJAh2Lhxo8Fjli1bhiFDhiA4OBhFRUVSl0REZNV0\nd14tKWnpGkx1hZKkodDc3IylS5ciPz8fJSUlyMzMxIULF/SOycvLQ3l5OcrKyrBr1y4kJydLWZLF\n0mg0cpcgKVv+fLb82QB+PkumO9dgqiuUJA2FkydPwt/fH4MHD0aPHj0QFxeHAwcO6B2Tk5ODBQsW\nAADCwsJQX1+Puro6KcuySNb8P0xj2PLns+XPBvDzWbrWVyiFhnZvrkHSUKiuroaPj4/4t7e3N6qr\nqx94TFVVlZRlERHZHG3XsGpV9+YaJA0FhUJh1HGCIHTpdURE9D+6XYN2rqHTBAmdOHFCmDZtmvj3\nunXrhA0bNugdk5iYKGRmZop/Dxs2TKitrW1zLj8/PwEAf/jDH/7wpxM/fn5+nfredoSERo8ejbKy\nMlRUVGDgwIHIzs5GZmam3jExMTHYvn074uLiUFhYCFdXV3h4eLQ5V3l5uZSlEhERAElDwdHREdu3\nb8e0adPQ3NyMhIQEBAQEIC0tDQCQmJiIyMhI5OXlwd/fH3369EF6erqUJRERUQcUgtBqQJ+IiOyW\nxa9oNmbxm7WqrKxEeHg4AgMDMWLECGzbtk3ukiTR3NwMlUqF6OhouUsxufr6esyePRsBAQFQKpUo\nLCyUuySTWr9+PQIDAxEUFIR58+bhZ0u5kXAXLF68GB4eHggKChIfu379OqZMmYKhQ4di6tSpqK+v\nl7HC7jH0+V5++WUEBAQgODgYs2bNws2bNx94HosOBWMWv1mzHj16YPPmzSguLkZhYSF27NhhU59P\na+vWrVAqlTZ5VdkLL7yAyMhIXLhwAefOnUNAQIDcJZlMRUUF/vrXv+L06dM4f/48mpubkZWVJXdZ\nXbZo0SLk5+frPbZhwwZMmTIFpaWliIiIwIYNG2SqrvsMfb6pU6eiuLgYZ8+exdChQ7F+/foHnsei\nQ8GYxW/WzNPTEyEhIQAAZ2dnBAQEoKamRuaqTKuqqgp5eXlYsmRJm0uPrd3Nmzdx7NgxLF68GEDL\nHJqLi4vMVZlOv3790KNHDzQ2NuLevXtobGyEl5eX3GV12YQJE+Dm5qb3mO7i2QULFuCTTz6RozST\nMPT5pkyZAgeHlq/5sLAwo9aAWXQoGLP4zVZUVFSgqKgIYWFhcpdiUsuXL8emTZvE/2HakosXL+IX\nv/gFFi1L6IxJAAAGhElEQVRahNDQUPz+979HY2Oj3GWZjLu7O1588UUMGjQIAwcOhKurK5588km5\nyzKpuro68WpHDw8Pm95NYffu3YiMjHzgcRb9/1RbHG4w5NatW5g9eza2bt0KZ2dnucsxmdzcXAwY\nMAAqlcrmugQAuHfvHk6fPo3nnnsOp0+fRp8+fax6+KG1b7/9Flu2bEFFRQVqampw69YtfPDBB3KX\nJRmFQmGz3zl/+tOf8PDDD2PevHkPPNaiQ8HLywuVlZXi35WVlfD29paxItO7e/cunnrqKfzud79D\nbGys3OWYVEFBAXJycuDr64v4+HgcOXIE8+fPl7ssk/H29oa3tzfGjBkDAJg9ezZOnz4tc1Wm8/XX\nX+OJJ55A//794ejoiFmzZqGgoEDuskzKw8MDtbW1AIDLly9jwIABMldkehkZGcjLyzM60C06FHQX\nv925cwfZ2dmIiYmRuyyTEQQBCQkJUCqVSElJkbsck1u3bh0qKytx8eJFZGVlYfLkydizZ4/cZZmM\np6cnfHx8UFpaCgA4fPgwAgMDZa7KdIYPH47CwkLcvn0bgiDg8OHDUCqVcpdlUjExMXj//fcBAO+/\n/77N/cMsPz8fmzZtwoEDB9CrVy/jXtSp9c8yyMvLE4YOHSr4+fkJ69atk7sckzp27JigUCiE4OBg\nISQkRAgJCREOHTokd1mS0Gg0QnR0tNxlmNyZM2eE0aNHCyNHjhR+85vfCPX19XKXZFIbN24UlEql\nMGLECGH+/PnCnTt35C6py+Li4oRHH31U6NGjh+Dt7S3s3r1buHbtmhARESEMGTJEmDJlinDjxg25\ny+yy1p/vvffeE/z9/YVBgwaJ3y/JyckPPA8XrxERkciih4+IiMi8GApERCRiKBARkYihQEREIoYC\nERGJGApERCRiKBARkYihQFZv8uTJ+Pzzz/Ue27JlC5577rl2X1NaWorIyEgMHToUo0aNwty5c3Hl\nyhVoNBq4uLhApVKJP0eOHGnz+pkzZ6KhocHkn0Vr4cKF+Pjjj8XPcvv2bcnei0iXpLfjJDKH+Ph4\nZGVlYerUqeJj2dnZ2LRpk8Hjm5qaEBUVhc2bN2PmzJkAgKNHj+KHH36AQqHAxIkT8emnn3b4ngcP\nHjTdBzBAd3O2rVu34plnnkHv3r0lfU8igJ0C2YCnnnoKBw8exL179wBA3NVz/PjxBo//8MMP8cQT\nT4iBAACTJk1CYGCg0bu5Dh48GNevX0dFRQUCAgLw7LPPYsSIEZg2bRqampr0jr158yYGDx4s/v3T\nTz9h0KBBaG5uxpkzZzB27Fjxzli6d/4SBAF/+ctfUFNTg/DwcEREROD+/ftYuHAhgoKCMHLkSGzZ\nssXY/5qIjMJQIKvn7u6Oxx9/HHl5eQCArKwszJ07t93ji4uLMWrUqHafP3bsmN7w0cWLF9sco7vF\ncnl5OZYuXYp///vfcHV1FYd9tFxcXBASEgKNRgOgZUvx6dOn46GHHsL8+fOxadMmnD17FkFBQViz\nZo3eezz//PMYOHAgNBoN/vnPf6KoqAg1NTU4f/48zp07h0WLFhn13xGRsRgKZBO0Q0hAy9BRfHx8\nh8d31BFMmDABRUVF4o+vr2+H5/L19cXIkSMBAKNGjUJFRUWbY+bOnYvs7GwA/wutmzdv4ubNm5gw\nYQKAljt/ffnllx2+l5+fH7777jssW7YMn332Gfr169fh8USdxVAgmxATEyP+S7qxsREqlardYwMD\nA3Hq1CmTvXfPnj3F3x966CFxGEtXdHQ08vPzcePGDZw+fRqTJ09uc4wxQ1eurq44d+4c1Go13n33\nXSxZsqR7xRO1wlAgm+Ds7Izw8HAsWrTogXeXmjdvHgoKCsThJgD48ssvUVxcLGl9Y8aMwbJlyxAd\nHQ2FQgEXFxe4ubnh+PHjAIC//e1vUKvVbV7bt29f8Uqna9eu4d69e5g1axbeeOMNm7qpD1kGXn1E\nNiM+Ph6zZs3C3r17OzyuV69eyM3NRUpKClJSUtCjRw8EBwdjy5YtuHr1qjinoPV///d/mDVrlt45\ndOcUWt/Csb1bOs6dOxdz5swR5xaAlhu7JCUlobGxEX5+fkhPT2/zumeffRbTp0+Hl5cXNm/ejEWL\nFuH+/fsAYFO3/yTLwPspEBGRiMNHREQk4vAR2azz589j/vz5eo/16tULJ06ckKkiIsvH4SMiIhJx\n+IiIiEQMBSIiEjEUiIhIxFAgIiIRQ4GIiET/D0+UbF1OpjbwAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "DC load line shown in figure.\n" + ] + } + ], + "prompt_number": 22 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit