From 64d949698432e05f2a372d9edc859c5b9df1f438 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- .../LalitKumar_version_backup/chapter2.ipynb | 347 +++++++++++++++++++++ sample_notebooks/LalitKumar/chapter2.ipynb | 347 --------------------- 2 files changed, 347 insertions(+), 347 deletions(-) create mode 100755 sample_notebooks/LalitKumar/LalitKumar_version_backup/chapter2.ipynb delete mode 100755 sample_notebooks/LalitKumar/chapter2.ipynb (limited to 'sample_notebooks/LalitKumar') diff --git a/sample_notebooks/LalitKumar/LalitKumar_version_backup/chapter2.ipynb b/sample_notebooks/LalitKumar/LalitKumar_version_backup/chapter2.ipynb new file mode 100755 index 00000000..57657aa7 --- /dev/null +++ b/sample_notebooks/LalitKumar/LalitKumar_version_backup/chapter2.ipynb @@ -0,0 +1,347 @@ +{ + "metadata": { + "name": "", + "signature": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter2 : Atomic model & bonding in solids" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.1, page no-28" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#given\n", + "#atomic no. of gold\n", + "Z=79\n", + "#kinetic energy of alpha particle\n", + "E=7.68*1.6*(10)**(-13) #J because [1MeV=1.6*(10)**(-13)]\n", + "e=1.6*10**(-19) #C\n", + "E0=8.854*10**(-12) #F/m\n", + "#the distance of closest approach is given by:\n", + "d0=2*e*Z*e/(4*(math.pi)*E0*E) #m\n", + "print \"The closest approach of alpha particle is %.2ef m\" %d0" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The closest approach of alpha particle is 2.96e-14f m\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.2, page no-29" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "from numpy import *\n", + "#given\n", + "#IN THE RUTHERFORD SCATTERING EXPERIMENT\n", + "#the no of particles scattered at\n", + "theta1=(pi)/2 #radians\n", + "#is\n", + "N90=44 #per minute\n", + "#the number of particles scattered particales N is given by\n", + "#N=C*(1/(sin(theta/2))**4) where C is propotionality constant\n", + "#solving above equation for C\n", + "C=N90*(sin(theta1/2))**4 \n", + "# now to find the no of particles scatering at 75 and 135 degrees\n", + "theta2=75*(pi)/180 #radians\n", + "N75=C*(1/(sin(theta2/2))**4) #per minute\n", + "theta3=135*(pi)/180 #radians\n", + "N135=C*(1/(sin(theta3/2))**4) #per minute\n", + "print \"The no of particles scattered at 75 and 135 degrees are %d per minute and %d per minutes\" %(N75,N135)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The no of particles scattered at 75 and 135 degrees are 80 per minute and 15 per minutes\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.3, page no-32" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#mass of electron\n", + "m=9.11*10**(-31) #kg\n", + "#charge on an electron\n", + "e=1.6*10**(-19) #C\n", + "#plank's constant\n", + "h=6.62*10**(-34)\n", + "E0=8.85*10**(-12) \n", + "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n", + "n=1\n", + "#atomic number of hydrogen\n", + "Z=1\n", + "#radius of first orbit of hydrogen is given by\n", + "r1=n**2*E0*h**2/((pi)*m*Z*e**2) #m\n", + "print \"The radius of the first orbit of the electron in the hydrogen atom %.2e\"%(r1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The radius of the first orbit of the electron in the hydrogen atom 5.29e-11\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.4, page no-32" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#mass of electron\n", + "m=9.11*10**(-31) #kg\n", + "#charge on an electron\n", + "e=1.6*10**(-19) #C\n", + "#plank's constant\n", + "h=6.62*10**(-34)\n", + "E0=8.85*10**(-12) \n", + "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n", + "n=1\n", + "#atomic number of hydrogen\n", + "Z=1\n", + "#ionization potential energy of hydrogen atom is given by\n", + "E=m*Z**2*e**4/(8*(E0)**2*h**2*n**2) #J\n", + "#energy in eV\n", + "EV=E/e #eV\n", + "print \"The ionization potential for hydrogen atom is %0.2f V\" %(EV)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The ionization potential for hydrogen atom is 13.59 V\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.5, page no-34" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.6, page no-36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#uncertainity in the momentum\n", + "deltap=10**-27 #kg ms**-1\n", + "#according to uncertainity principle\n", + "#deltap* deltax >=h/(2*(pi))\n", + "#we know that \n", + "h=6.626*10**-34 #Js\n", + "#here instead of inequality we are using only equality just for notation otherwise it is greater than equal to as mentioned above\n", + "#now deltax is given by\n", + "deltax=h/(2*(pi)*deltap) #m\n", + "print \"The minimum uncertainity is %.2e m\"%(deltax)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum uncertainity is 1.05e-07 m\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.10, page no- 57" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#ionization potential of hydrogen\n", + "E1=13.6 #eV\n", + "#when \n", + "n=3\n", + "E3=-E1/n**2 #eV\n", + "#when \n", + "n=5\n", + "E5=-E1/n**2 #eV\n", + "print \"Energy of 3rd and 5th orbits are %0.2f eV and %0.2f eV\"%(E3,E5)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy of 3rd and 5th orbits are -1.51 eV and -0.54 eV\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.11, page no-59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#dipole moment og HF is\n", + "DM=6.375*10**(-30) #Cm\n", + "#intermolecular distance\n", + "r=0.9178*10**(-10) #m\n", + "#charge on an electron\n", + "e=1.67*10**(-19) #C\n", + "#since the HF posses ionic characters\n", + "#so\n", + "#Hf in fully ionic state has dipole moment as\n", + "DM2=r*e #Cm\n", + "#percentage ionic characters\n", + "percentage=DM/DM2*100 #%\n", + "print \"The percentage ionic character is %0.2f approx.\"%(percentage)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The percentage ionic character is 41.59 approx.\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example-2.12, page no-60" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "#elctronegativity of In\n", + "EnIn=1.5\n", + "#elctronegativity of As\n", + "EnAs=2.2\n", + "#elctronegativity of Ga\n", + "EnGa=1.8\n", + "#for InAs\n", + "ionic_charater1=(1-exp((-0.25)*(EnAs-EnIn)**2))*100 #in %\n", + "#for GaAs\n", + "ionic_charater2=(1-exp((-0.25)*(EnAs-EnGa)**2))*100 # in %\n", + "print \"Ionic character in InAs and GaAs are %0.1f %% and %0.1f %%\"%(ionic_charater1,ionic_charater2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ionic character in InAs and GaAs are 11.5 % and 3.9 %\n" + ] + } + ], + "prompt_number": 30 + } + ], + "metadata": {} + } + ] +} diff --git a/sample_notebooks/LalitKumar/chapter2.ipynb b/sample_notebooks/LalitKumar/chapter2.ipynb deleted file mode 100755 index 57657aa7..00000000 --- a/sample_notebooks/LalitKumar/chapter2.ipynb +++ /dev/null @@ -1,347 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter2 : Atomic model & bonding in solids" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.1, page no-28" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "#given\n", - "#atomic no. of gold\n", - "Z=79\n", - "#kinetic energy of alpha particle\n", - "E=7.68*1.6*(10)**(-13) #J because [1MeV=1.6*(10)**(-13)]\n", - "e=1.6*10**(-19) #C\n", - "E0=8.854*10**(-12) #F/m\n", - "#the distance of closest approach is given by:\n", - "d0=2*e*Z*e/(4*(math.pi)*E0*E) #m\n", - "print \"The closest approach of alpha particle is %.2ef m\" %d0" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The closest approach of alpha particle is 2.96e-14f m\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.2, page no-29" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from math import *\n", - "from numpy import *\n", - "#given\n", - "#IN THE RUTHERFORD SCATTERING EXPERIMENT\n", - "#the no of particles scattered at\n", - "theta1=(pi)/2 #radians\n", - "#is\n", - "N90=44 #per minute\n", - "#the number of particles scattered particales N is given by\n", - "#N=C*(1/(sin(theta/2))**4) where C is propotionality constant\n", - "#solving above equation for C\n", - "C=N90*(sin(theta1/2))**4 \n", - "# now to find the no of particles scatering at 75 and 135 degrees\n", - "theta2=75*(pi)/180 #radians\n", - "N75=C*(1/(sin(theta2/2))**4) #per minute\n", - "theta3=135*(pi)/180 #radians\n", - "N135=C*(1/(sin(theta3/2))**4) #per minute\n", - "print \"The no of particles scattered at 75 and 135 degrees are %d per minute and %d per minutes\" %(N75,N135)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The no of particles scattered at 75 and 135 degrees are 80 per minute and 15 per minutes\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.3, page no-32" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#mass of electron\n", - "m=9.11*10**(-31) #kg\n", - "#charge on an electron\n", - "e=1.6*10**(-19) #C\n", - "#plank's constant\n", - "h=6.62*10**(-34)\n", - "E0=8.85*10**(-12) \n", - "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n", - "n=1\n", - "#atomic number of hydrogen\n", - "Z=1\n", - "#radius of first orbit of hydrogen is given by\n", - "r1=n**2*E0*h**2/((pi)*m*Z*e**2) #m\n", - "print \"The radius of the first orbit of the electron in the hydrogen atom %.2e\"%(r1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The radius of the first orbit of the electron in the hydrogen atom 5.29e-11\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.4, page no-32" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#mass of electron\n", - "m=9.11*10**(-31) #kg\n", - "#charge on an electron\n", - "e=1.6*10**(-19) #C\n", - "#plank's constant\n", - "h=6.62*10**(-34)\n", - "E0=8.85*10**(-12) \n", - "#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n", - "n=1\n", - "#atomic number of hydrogen\n", - "Z=1\n", - "#ionization potential energy of hydrogen atom is given by\n", - "E=m*Z**2*e**4/(8*(E0)**2*h**2*n**2) #J\n", - "#energy in eV\n", - "EV=E/e #eV\n", - "print \"The ionization potential for hydrogen atom is %0.2f V\" %(EV)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ionization potential for hydrogen atom is 13.59 V\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.5, page no-34" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.6, page no-36" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#uncertainity in the momentum\n", - "deltap=10**-27 #kg ms**-1\n", - "#according to uncertainity principle\n", - "#deltap* deltax >=h/(2*(pi))\n", - "#we know that \n", - "h=6.626*10**-34 #Js\n", - "#here instead of inequality we are using only equality just for notation otherwise it is greater than equal to as mentioned above\n", - "#now deltax is given by\n", - "deltax=h/(2*(pi)*deltap) #m\n", - "print \"The minimum uncertainity is %.2e m\"%(deltax)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The minimum uncertainity is 1.05e-07 m\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.10, page no- 57" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#ionization potential of hydrogen\n", - "E1=13.6 #eV\n", - "#when \n", - "n=3\n", - "E3=-E1/n**2 #eV\n", - "#when \n", - "n=5\n", - "E5=-E1/n**2 #eV\n", - "print \"Energy of 3rd and 5th orbits are %0.2f eV and %0.2f eV\"%(E3,E5)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Energy of 3rd and 5th orbits are -1.51 eV and -0.54 eV\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.11, page no-59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#dipole moment og HF is\n", - "DM=6.375*10**(-30) #Cm\n", - "#intermolecular distance\n", - "r=0.9178*10**(-10) #m\n", - "#charge on an electron\n", - "e=1.67*10**(-19) #C\n", - "#since the HF posses ionic characters\n", - "#so\n", - "#Hf in fully ionic state has dipole moment as\n", - "DM2=r*e #Cm\n", - "#percentage ionic characters\n", - "percentage=DM/DM2*100 #%\n", - "print \"The percentage ionic character is %0.2f approx.\"%(percentage)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The percentage ionic character is 41.59 approx.\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example-2.12, page no-60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#given\n", - "#elctronegativity of In\n", - "EnIn=1.5\n", - "#elctronegativity of As\n", - "EnAs=2.2\n", - "#elctronegativity of Ga\n", - "EnGa=1.8\n", - "#for InAs\n", - "ionic_charater1=(1-exp((-0.25)*(EnAs-EnIn)**2))*100 #in %\n", - "#for GaAs\n", - "ionic_charater2=(1-exp((-0.25)*(EnAs-EnGa)**2))*100 # in %\n", - "print \"Ionic character in InAs and GaAs are %0.1f %% and %0.1f %%\"%(ionic_charater1,ionic_charater2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ionic character in InAs and GaAs are 11.5 % and 3.9 %\n" - ] - } - ], - "prompt_number": 30 - } - ], - "metadata": {} - } - ] -} -- cgit