From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- .../ApurvaBhushan_version_backup/Chapter_3.ipynb | 195 +++++++++++++++++++ .../ApurvaBhushan_version_backup/Chapter_3_1.ipynb | 212 +++++++++++++++++++++ 2 files changed, 407 insertions(+) create mode 100755 sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3.ipynb create mode 100755 sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3_1.ipynb (limited to 'sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup') diff --git a/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3.ipynb b/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3.ipynb new file mode 100755 index 00000000..777522bb --- /dev/null +++ b/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Elements of the Theory of Plasticity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Example 3.1, True Stress and True Strain, Page No. 76" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Engineering Stress at maximum load = 99852.1 psi\n", + "True Fracture Stress = 112785 psi\n", + "True Strain at fracture = 0.344939\n", + "Engineering strain at fracture = 0.411903\n" + ] + } + ], + "source": [ + "from math import pi\n", + "from math import log\n", + "from math import exp\n", + "\n", + "#variable declaration\n", + "D_i=0.505;\n", + "L=2;\n", + "P_max=20000;\n", + "P_f=16000;\n", + "D_f=0.425;\n", + "\n", + "#calculation\n", + "E_St= P_max*4/(pi*D_i**2);\n", + "T_fr_St= P_f*4/(pi*D_f**2);\n", + "e_f=log(D_i**2/D_f**2);\n", + "e=exp(e_f)-1;\n", + "\n", + "#result\n", + "print('\\nEngineering Stress at maximum load = %g psi\\nTrue Fracture Stress = %g psi\\nTrue Strain at fracture = %g\\nEngineering strain at fracture = %g')%(E_St,T_fr_St,e_f,e);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Example 3.2, Yielding Criteria for Ductile Metals, Page No. 78" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "\n", + "\n", + "from math import sqrt\n", + "\n", + "#variable declaration\n", + "sigma00=500;\n", + "sigma_z=-50;\n", + "sigma_y=100;\n", + "sigma_x=200;\n", + "T_xy=30;\n", + "T_yz=0;\n", + "T_xz=0;\n", + "\n", + "#calculation\n", + "sigma0=sqrt((sigma_x-sigma_y)**2+(sigma_y-sigma_z)**2+(sigma_z-sigma_x)**2+6*(T_xy**2+T_yz**2+T_xz**2))/sqrt(2);\n", + "s=sigma00/sigma0;\n", + "\n", + "#result\n", + "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Example 3.3, Tresca Criterion, Page No. 81" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "\n", + "\n", + "#variable declaration\n", + "sigma00=500;\n", + "sigma_z=-50;\n", + "sigma_y=100;\n", + "sigma_x=200;\n", + "T_xy=30;\n", + "T_yz=0;\n", + "T_xz=0;\n", + "\n", + "#calculation\n", + "sigma0=sigma_x-sigma_z;\n", + "s=sigma00/sigma0;\n", + "\n", + "#result\n", + "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "Example 3.4, Levy-Mises Equation, Page No. 91" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Plastic Strain = 0.199532\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "\n", + "#variable declaration\n", + "r_t=20;\n", + "p=1000;\n", + "\n", + "#calculation\n", + "sigma1=p*r_t;\n", + "sigma1=sigma1/1000; #conversion to ksi\n", + "sigma=sqrt(3)*sigma1/2;\n", + "e=(sigma/25)**(1/0.25);\n", + "e1=sqrt(3)*e/2;\n", + "\n", + "#result\n", + "print('\\nPlastic Strain = %g')%(e1);\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3_1.ipynb b/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3_1.ipynb new file mode 100755 index 00000000..3168a0f9 --- /dev/null +++ b/sample_notebooks/ApurvaBhushan/ApurvaBhushan_version_backup/Chapter_3_1.ipynb @@ -0,0 +1,212 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Elements of the Theory of Plasticity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 3.1, True Stress and True Strain, Page No. 76" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Engineering Stress at maximum load = 99852.1 psi\n", + "True Fracture Stress = 112785 psi\n", + "True Strain at fracture = 0.344939\n", + "Engineering strain at fracture = 0.411903\n" + ] + } + ], + "source": [ + "from math import pi\n", + "from math import log\n", + "from math import exp\n", + "\n", + "#variable declaration\n", + "D_i=0.505;\n", + "L=2;\n", + "P_max=20000;\n", + "P_f=16000;\n", + "D_f=0.425;\n", + "\n", + "#calculation\n", + "E_St= P_max*4/(pi*D_i**2);\n", + "T_fr_St= P_f*4/(pi*D_f**2);\n", + "e_f=log(D_i**2/D_f**2);\n", + "e=exp(e_f)-1;\n", + "\n", + "#result\n", + "print('\\nEngineering Stress at maximum load = %g psi\\nTrue Fracture Stress = %g psi\\nTrue Strain at fracture = %g\\nEngineering strain at fracture = %g')%(E_St,T_fr_St,e_f,e);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 3.2, Yielding Criteria for Ductile Metals, Page No. 78" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Since the calculated value of sigma0 = 224.054 MPa, which is less than the yield strength of the aluminium alloy\n", + "Thus safety factor is = 2.23161\n" + ] + } + ], + "source": [ + "\n", + "from math import sqrt\n", + "\n", + "#variable declaration\n", + "sigma00=500;\n", + "sigma_z=-50;\n", + "sigma_y=100;\n", + "sigma_x=200;\n", + "T_xy=30;\n", + "T_yz=0;\n", + "T_xz=0;\n", + "\n", + "#calculation\n", + "sigma0=sqrt((sigma_x-sigma_y)**2+(sigma_y-sigma_z)**2+(sigma_z-sigma_x)**2+6*(T_xy**2+T_yz**2+T_xz**2))/sqrt(2);\n", + "s=sigma00/sigma0;\n", + "\n", + "#result\n", + "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 3.3, Tresca Criterion, Page No. 81" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Since the calculated value of sigma0 = 250 MPa, which is less than the yield strength of the aluminium alloy\n", + "Thus safety factor is = 2\n" + ] + } + ], + "source": [ + "\n", + "\n", + "#variable declaration\n", + "sigma00=500;\n", + "sigma_z=-50;\n", + "sigma_y=100;\n", + "sigma_x=200;\n", + "T_xy=30;\n", + "T_yz=0;\n", + "T_xz=0;\n", + "\n", + "#calculation\n", + "sigma0=sigma_x-sigma_z;\n", + "s=sigma00/sigma0;\n", + "\n", + "#result\n", + "print('\\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\\nThus safety factor is = %g')%(sigma0,s);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Example 3.4, Levy-Mises Equation, Page No. 91" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Plastic Strain = 0.199532\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "\n", + "#variable declaration\n", + "r_t=20;\n", + "p=1000;\n", + "\n", + "#calculation\n", + "sigma1=p*r_t;\n", + "sigma1=sigma1/1000; #conversion to ksi\n", + "sigma=sqrt(3)*sigma1/2;\n", + "e=(sigma/25)**(1/0.25);\n", + "e1=sqrt(3)*e/2;\n", + "\n", + "#result\n", + "print('\\nPlastic Strain = %g')%(e1);\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit