From f270f72badd9c61d48f290c3396004802841b9df Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- Thermodynamics_by_C_P_Arora/Chapter12.ipynb | 504 ++++++++++++++++++++++++++++ 1 file changed, 504 insertions(+) create mode 100755 Thermodynamics_by_C_P_Arora/Chapter12.ipynb (limited to 'Thermodynamics_by_C_P_Arora/Chapter12.ipynb') diff --git a/Thermodynamics_by_C_P_Arora/Chapter12.ipynb b/Thermodynamics_by_C_P_Arora/Chapter12.ipynb new file mode 100755 index 00000000..6b383304 --- /dev/null +++ b/Thermodynamics_by_C_P_Arora/Chapter12.ipynb @@ -0,0 +1,504 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:26bd61324c67aa0fef3f72b60851ba818d2a228685c4163bcb87732321b4f4fb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12:NON-REACTING MIXTURES OF GASES AND LIQUIDS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1, Page No:553" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "M1=28.02; # Molecular mass of N2\n", + "M2=32; # Molecular mass of O2\n", + "M3=39.91; # Molecular mass of Ar\n", + "M4=44; # Molecular mass of CO2\n", + "M5=2.02; # Molecular mass of H2\n", + "y1=0.7803; # Part by volume of N2 in dry atmospheric air\n", + "y2=0.2099; # Part by volume of O2 in dry atmospheric air\n", + "y3=0.0094; # Part by volume of Ar in dry atmospheric air\n", + "y4=0.0003; # Part by volume of CO2 in dry atmospheric air\n", + "y5=0.0001; # Part by volume of H2 in dry atmospheric air\n", + "R_1=8.3143; # Universal gas constant of air in kJ/kmol K\n", + "\n", + "#Calculation for (a)\n", + "# (a).Average molecular mass and apperent gas constant of dry atmospheric air\n", + "M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4)+(y5*M5); # Average molecular mass\n", + "R=R_1/M; #Apperent gas constant of dry atmospheric air\n", + "\n", + "#Result for (a)\n", + "print \"(a).Average molecular mass and apperent gas constant of dry atmospheric air\",\"\\nAverage molecular mass = \",round(M,3),\"kmol\"\n", + "print \"Apperent gas constant of dry atmospheric air =\",round(R,3),\"kJ/kg K\"\n", + "\n", + "#Calculation for (b)\n", + "# (b).The fraction of each component\n", + "m1=(M1*y1)/M;#The fraction of N2 component\n", + "m2=(M2*y2)/M;#The fraction of O2 component\n", + "m3=(M3*y3)/M;#The fraction of Ar component\n", + "m4=(M4*y4)/M;#The fraction of CO2 component\n", + "m5=(M5*y5)/M;#The fraction of H2 component\n", + "\n", + "#Result for (b)\n", + "print \"\\n(b).The fraction of N2,O2,Ar,CO2,H2 components are given below respectively \"\n", + "print \"m1 =\",round(m1,4)\n", + "print \"m2 =\",round(m2,4)\n", + "print \"m3 =\",round(m3,4)\n", + "print \"m4 =\",round(m4,4)\n", + "print \"m5 =\",round(m5,4)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a).Average molecular mass and apperent gas constant of dry atmospheric air \n", + "Average molecular mass = 28.969 kmol\n", + "Apperent gas constant of dry atmospheric air = 0.287 kJ/kg K\n", + "\n", + "(b).The fraction of N2,O2,Ar,CO2,H2 components are given below respectively \n", + "m1 = 0.7547\n", + "m2 = 0.2319\n", + "m3 = 0.013\n", + "m4 = 0.0005\n", + "m5 = 0.0\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.2, Page No:555" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "M1=44; # Molecular mass of CO2\n", + "M2=32; # Molecular mass of O2\n", + "M3=28; # Molecular mass of CO\n", + "M4=28; # Molecular mass of N2\n", + "y1=0.1; # Part by volume of CO2 in exhaust gas\n", + "y2=0.06; # Part by volume of O2 in exhaust gas\n", + "y3=0.03; # Part by volume of CO in exhaust gas\n", + "y4=0.81; # Part by volume of N2 in exhaust gas\n", + "R_1=8.3143; # Universal gas constant in kJ/kmol K\n", + "\n", + "#Calculation for (a)\n", + "# (a).Average molecular mass and apperent gas constant of exhaust gas\n", + "M=(y1*M1)+(y2*M2)+(y3*M3)+(y4*M4); # Average molecular mass\n", + "R=R_1/M; #Apperent gas constant of dry atmospheric air\n", + "\n", + "#Result for (a)\n", + "print \"(a).Average molecular mass and apperent gas constant of exhaust gas\",\"\\nAverage molecular mass = \",round(M,3),\"kmol\"\n", + "print \"Apperent gas constant of exhaust gas =\",round(R,4),\"kJ/kg K\"\n", + "\n", + "#Calculation for (b)\n", + "# (b).The fraction of each component\n", + "m1=(M1*y1)/M;#The fraction of CO2 component\n", + "m2=(M2*y2)/M;#The fraction of O2 component\n", + "m3=(M3*y3)/M;#The fraction of CO component\n", + "m4=(M4*y4)/M;#The fraction of N2 component\n", + "print \"\\n(b).The fraction of CO2,O2,CO,N2 components are given below respectively \"\n", + "print \"m1 =\",round(m1,3)\n", + "print \"m2 =\",round(m2,3)\n", + "print \"m3 =\",round(m3,3)\n", + "print \"m4 =\",round(m4,3)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a).Average molecular mass and apperent gas constant of exhaust gas \n", + "Average molecular mass = 29.84 kmol\n", + "Apperent gas constant of exhaust gas = 0.2786 kJ/kg K\n", + "\n", + "(b).The fraction of CO2,O2,CO,N2 components are given below respectively \n", + "m1 = 0.147\n", + "m2 = 0.064\n", + "m3 = 0.028\n", + "m4 = 0.76\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.3, Page No:557" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "y1=0.79; # Volume of Nitrogen in 1 kg of air\n", + "y2=0.21; # Volume of Oxygen in 1 kg of air\n", + "R_1=8.3143; # Universal gas constant of air in kJ/kmol K\n", + "T0=298; # temperature of Surroundings in kelvin\n", + "\n", + "#Calculation\n", + "del_Sgen=-R_1*((y1*math.log (y1))+(y2*math.log (y2))); #Entropy generation\n", + "LW=T0*del_Sgen; # Minimum work\n", + "\n", + "#Result\n", + "print \"The minimum work required for separation of two gases = \",round(LW,0),\"kJ/kmmol K\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum work required for separation of two gases = 1273.0 kJ/kmmol K\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.4, Page No:562" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable declaration\n", + "DPT=8; # Dew point temperature in degree celcius\n", + "p=100; # Pressure of air in kPa\n", + "T=25; # Temperature of air in degree celcius\n", + "\n", + "#Calculation for (a)\n", + "# (a).partial pressure of water vapour in air\n", + "pv=1.0854; # Saturation pressure of water at DBT in kPa\n", + "\n", + "#Result for (a)\n", + "print \"(a).partial pressure of water vapour in air = \",pv,\"kPa\"\n", + "\n", + "#Calculation for (b)\n", + "# (b).Specific humidity\n", + "sh=0.622*pv/(p-pv);#Specific humidity\n", + "\n", + "#Result for (b)\n", + "print \"\\n(b).Specific humidity =\",round(sh,4),\"kg of water vapour /kg of dry air\"\n", + "\n", + "#Calculation for (c)\n", + "# (c).Relative humidity\n", + "pg=3.169; # Saturation pressure of water at T in kPa\n", + "RH=pv/pg; #Relative humidity\n", + "\n", + "#Result for (c)\n", + "print \"\\n(c).Relative humidity =\",round(RH*100,2),\"%\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a).partial pressure of water vapour in air = 1.0854 kPa\n", + "\n", + "(b).Specific humidity = 0.0068 kg of water vapour /kg of dry air\n", + "\n", + "(c).Relative humidity = 34.25 %\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.5, Page No:566" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "DBT=35; # Dry bulb temperature in degree celcius\n", + "WBT=23; # Wet bulb temperature in degree celcius\n", + "P=100; # Pressure of air in kPa\n", + "Cpo=1.0035; # Specific heat at constant pressure in kJ/kg K\n", + "R=0.287; # characteristic gas constant of air in kJ/kg K\n", + "# (a).Humidity ratio\n", + "hv=2565.3; # specific enthalpy hg at DBT in kJ/kg \n", + "hfWBT=96.52; hfgWBT=2443; # specific enthalpy at WBT in kJ/kg \n", + "PsatWBT=2.789;# Saturation pressure at WBT in kPa\n", + "\n", + "#Calculation for (a)\n", + "shWBT=0.622*PsatWBT/(P-PsatWBT);# specific humidity\n", + "sh=((Cpo*(WBT-DBT))+(shWBT*hfgWBT))/(hv-hfWBT); # Humidity ratio\n", + "\n", + "#Result for (a)\n", + "print \"(a).Humidity ratio =\",round(sh,4),\"kg w.v /kg d.a\"\n", + "\n", + "#Calculation for (b)\n", + "# (b).Relative Humidity\n", + "pv=sh*P/(0.622+sh); # Partial pressure of water vapour\n", + "pg=5.628; # Saturation pressure at DBT in kPa\n", + "RH=pv/pg; #Relative Humidity\n", + "\n", + "#Result for (b)\n", + "print \"\\n(b).Relative Humidity =\",round(RH*100,2),\"%\"\n", + "\n", + "#Calculation for (c)\n", + "# (c).Dew point temperature\n", + "DPT=17.5; # Saturation temperature at pg in degree celcius\n", + "\n", + "#Result for (c)\n", + "print \"\\n(c).Dew point temperature =\",DPT,\"oC\"\n", + "\n", + "#Calculation for (d)\n", + "# (d).Specific volume\n", + "v=(R*(DBT+273))/(P-pv); # Specific volume\n", + "\n", + "#Result for (d)\n", + "print \"\\n(d).Specific volume = \",round(v,1),\"m^3/kg\"\n", + "\n", + "#Calculation for (e)\n", + "# (e).Enthalpy of air\n", + "h=(Cpo*DBT)+(sh*hv); #Enthalpy of air\n", + "\n", + "#Result for (e)\n", + "print \"\\n(e).Enthalpy of air =\",round(h,0),\"kJ/kg d.a\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a).Humidity ratio = 0.0128 kg w.v /kg d.a\n", + "\n", + "(b).Relative Humidity = 35.78 %\n", + "\n", + "(c).Dew point temperature = 17.5 oC\n", + "\n", + "(d).Specific volume = 0.9 m^3/kg\n", + "\n", + "(e).Enthalpy of air = 68.0 kJ/kg d.a\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.6, Page No:570" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "DPT1=30; # Dew point temperature at inlet in degree celcius\n", + "DPT2=15; # Dew point temperature at outlet in degree celcius\n", + "RH1=0.50; # Relative humidity at inlet\n", + "RH2=0.80; # Relative humidity at outlet\n", + "p=101.325; # Atmospheric pressure in kPa\n", + "Cpo=1.0035; # Specific heat at constant pressure in kJ/kg K\n", + "pg1=4.246; # saturation pressure of water at DBT1 in kPa\n", + "pg2=1.7051; # saturation pressure of water at DBT2 in kPa\n", + "pv1=RH1*pg1; pv2=RH2*pg2; # Partial pressure of water vapour in air at inlet and outlet\n", + "hv1=2556.3;# specific enthalpy hg at DBT1 in kJ/kg\n", + "hv2=2528.9;# specific enthalpy hg at DBT2 in kJ/kg\n", + "hv3=63;# specific enthalpy hf at DBT 2in kJ/kg\n", + "\n", + "#Calculation\n", + "sh1=0.622*pv1/(p-pv1); sh2=0.622*pv2/(p-pv2); # Specific humidities at inlet and outlet\n", + "q=(Cpo*(DPT2-DPT1))+(sh2*hv2)-(sh1*hv1)+((sh1-sh2)*hv3); # Heat transfer\n", + "\n", + "#Result\n", + "print \"Heat removed from the air =\",round(q,1),\"kJ/kg of dry air\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Heat removed from the air = -27.3 kJ/kg of dry air\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.7, Page No:572" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "y1=0.5; # Molecular mass of CH4 in kmol\n", + "y2=0.5; # Molecular mass of C3H8 in kmol\n", + "T=363; # Temperature of gas in kelvin\n", + "p=5.06; # Pressure of gas in MPa\n", + "v=0.48; # volume of cylinder in m^3\n", + "R_1=8.3143; # Universal gas constant of air in kJ/kmol K\n", + "# (a).Using kay\u2019s rule\n", + "# let component 1 refer to methane and component 2 to propane\n", + "# the critical properties\n", + "Tc1=190.7; Tc2=370; # temperature in kelvin\n", + "Pc1=46.4; Pc2=42.7; # Pressure in bar\n", + "\n", + "#Calculation for (a)\n", + "# using kay\u2019s rule for the mixture\n", + "Tcmix=y1*Tc1+y2*Tc2;\n", + "Pcmix=y1*Pc1+y2*Pc2;\n", + "# reduced properties\n", + "Tr=T/Tcmix; Pr=p/Pcmix;\n", + "# From generalized chart\n", + "z=0.832;\n", + "v_1=z*R_1*T/(p*10**3); # molar volume of the mixture\n", + "d=(v-v_1)/v; # Percentage deviation from actual value\n", + "\n", + "#Result for (a)\n", + "print \"(a).Using kay\u2019s rule\",\"\\nPercentage deviation from actual value = \",round(d*100,1),\"%\"\n", + "\n", + "#Calculation for (b)\n", + "# (b).Using Redlich-Kwong equation of state\n", + "a1=0.42748*R_1*Tc1**2.5/Pc1;\n", + "a2=0.42748*R_1*Tc2**2.5/Pc2;\n", + "b1=0.08664*R_1*Tc1/Pc1;\n", + "b2=0.08664*R_1*Tc2/Pc2;\n", + "# Substituting these values in the equation 12.16\n", + "# And solving these equation by iteration method we get\n", + "v_1=0.47864;# molar volume of the mixture\n", + "d=(v-v_1)/v; # Percentage deviation from actual value\n", + "\n", + "#Result for (b)\n", + "print \"\\n(b).Using Redlich-Kwong equation of state\",\"\\nPercentage deviation from actual value = \",round(d*100,1),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a).Using kay\u2019s rule \n", + "Percentage deviation from actual value = -3.4 %\n", + "\n", + "(b).Using Redlich-Kwong equation of state \n", + "Percentage deviation from actual value = 0.3 %\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.8, Page No:586" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "ln_piCH4=-0.0323;\n", + "pi_CH4=0.9683;\n", + "p=6895; # Pressure in kPa\n", + "T=104.4; # Temperature in degree celcius\n", + "a=0.784;\n", + "\n", + "#Calculation \n", + "f_CH4=pi_CH4*a*p; # Faguacity\n", + "\n", + "#Result\n", + "print \"The Required Faguacity = \",round(f_CH4,0),\"kPa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Required Faguacity = 5234.0 kPa\n" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit