From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- .../Chapter2.ipynb | 588 +++++++++++++++++++++ 1 file changed, 588 insertions(+) create mode 100755 Thermodynamics_An_Engineering_Approach/Chapter2.ipynb (limited to 'Thermodynamics_An_Engineering_Approach/Chapter2.ipynb') diff --git a/Thermodynamics_An_Engineering_Approach/Chapter2.ipynb b/Thermodynamics_An_Engineering_Approach/Chapter2.ipynb new file mode 100755 index 00000000..db573fc6 --- /dev/null +++ b/Thermodynamics_An_Engineering_Approach/Chapter2.ipynb @@ -0,0 +1,588 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2: Energy Conversion and General Energy Analysis" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + " Example 2-1 ,Page No.57" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#there is a 0.00490% error as the answer in textbook is expressed in multiple of 10\n", + "#Constants used\n", + "Hu=6.73*10**10;#Energy liberated by 1 kg of uranium\n", + "\n", + "# Given values\n", + "p=0.75;# assuming the avg density of gasoline in kg/L\n", + "V=5;# consumption per day of gasoline in L\n", + "Hv=44000; #heat value in kJ/kg\n", + "mu=0.1;# mass of uranium used\n", + "\n", + "#Calculation\n", + "mgas=p*V;#mass of gasoline required per day\n", + "Egas=mgas*Hv;\n", + "Eu=mu*Hu;\n", + "d=Eu/Egas;\n", + "print'%i number of days the car can run with uranium' %round(d,0)\n", + "print'equivalent to %i years' %round(d/365,0)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "40788 number of days the car can run with uranium\n", + "equivalent to 112 years\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-2 ,Page No.59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given values\n", + "v=8.5;# wind speed in m/s\n", + "m=10;# given mass for part - b \n", + "mf=1154;# given flowrate for part - c\n", + "\n", + "#Calculations\n", + "e=(v**2)/2;\n", + "print'wind energy per unit mass %f J/kg' %round(e,1);\n", + "E=m*e;\n", + "print'wind energy for 10 kg mass %i J' %E;\n", + "E=mf*e/1000;\n", + "print'wind energy for mass flow rate of 1154kg/s %f kW'%round(E,1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wind energy per unit mass 36.100000 J/kg\n", + "wind energy for 10 kg mass 361 J\n", + "wind energy for mass flow rate of 1154kg/s 41.700000 kW\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-7 ,Page No.67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "# Given values\n", + "T=200;# applied torque in N\n", + "n=4000;# shaft rotation rate in revolutions per minute\n", + "\n", + "#Calculation\n", + "Wsh=(2*math.pi*n*T)/1000/60;#factor of 1000 to convert to kW and 60 to convert to sec\n", + "print'Power transmitted %f kW'%round(Wsh,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power transmitted 83.800000 kW\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-8 ,Page No.69" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Constants used\n", + "g=9.81;#acceleration due to gravity in m/s^2;\n", + "\n", + "#Given values\n", + "m=1200;#mass of car in kg\n", + "V=90/3.6;#velocity ; converting km/h into m/s\n", + "d=30*math.pi/180;#angle of slope ; converting into radians\n", + "\n", + "#Calculation\n", + "Vver=V*math.sin(d);#velocity in vertical direction\n", + "Wg=m*g*Vver/1000;\n", + "print'the addtional power %i kW'%Wg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the addtional power 147 kW\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-9 ,Page No.69" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "m=900;#mass of car in kg\n", + "v1=0;# intial velocity\n", + "v2=80/3.6;# final velocity; converting km/h into m/s\n", + "t=20;# time taken1\n", + "\n", + "#Calculation\n", + "Wa=m*(v2**2-v1**2)/2/1000;\n", + "Wavg=Wa/t;\n", + "print'the average power %f kW'%round(Wavg,1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the average power 11.100000 kW\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-10 ,Page No.74" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "Win=100;# work done in the process in kJ\n", + "Qout=500;# heat lost in kJ\n", + "U1=800;# internal energy of the fluid in kJ\n", + "\n", + "#Calculations\n", + "# Win - Qout = U2- U1 i.e change in internal energy \n", + "U2=U1-Qout+Win;\n", + "print'final internal of the system %i kJ'%U2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "final internal of the system 400 kJ\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-11 ,Page No.75" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given values\n", + "Win=20;# power consumption in W\n", + "mair=0.25;# rate of air discharge in kg/sec\n", + "\n", + "#calculation\n", + "v=math.sqrt(Win/2/mair)#Win = 1/2*m*v^2\n", + "if v >=8:\n", + " print('True');\n", + "else:\n", + " print('False')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "False\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-12 ,Page No.76" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "Win=200.0;#Power of fan in W\n", + "U=6.0;#Overall heat transfer coefficient in W/m^2 C\n", + "A=30;#Surface area in m^2\n", + "To=25;#Outdoor temperature in C\n", + "\n", + "#Calculations\n", + "Ti= (Win/U/A)+To;# Win = Qout = U*A*(Ti - To)\n", + "print'the indoor air temperature %f Celcius'%Ti\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the indoor air temperature 26.111111 Celcius\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-13 ,Page No.76" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "Plamp=80.0;#Power of lamp in W\n", + "N=30;#no of lamps\n", + "t=12;#time period the light is in use in hours/day\n", + "y=250;#days in a year light is in function \n", + "UC=0.07;#unit cost in $\n", + "\n", + "#Calculation\n", + "LP=Plamp*N/1000;#Lighting power in kW\n", + "OpHrs=t*y;#Operating hours\n", + "LE=LP*OpHrs;#Lighting energy in kW\n", + "LC=LE*UC;#Lighting cost\n", + "print'the annual energy cost $%i'%LC\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the annual energy cost $504\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-15 ,Page No.82" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "Ein=2.0;#Power of electric burner in kW\n", + "n1=0.73;#Efficiency of open burners\n", + "n2=0.38;#efficency of gas units\n", + "CinH=0.09;#Unit cost of electricity in $\n", + "CinB=0.55;#Unit cost of natural gas in $\n", + "\n", + "#Calculations\n", + "QutH= Ein * n1;\n", + "print'rate of energy consumption by the heater %f kW'%round(QutH,2);\n", + "CutH= CinH / n1;\n", + "print'the unit cost of utilized energy for heater $%f/kWh'%round(CutH,3);\n", + "QutB= QutH / n2 ;\n", + "print'rate of energy consumption by the burner %f kW'%round(QutB,2);\n", + "CutB= CinB / n2 / 29.3; # 1 therm = 29.3 kWh\n", + "print'the unit cost of utilized energy for burner %f kWh'%round(CutB,3);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rate of energy consumption by the heater 1.460000 kW\n", + "the unit cost of utilized energy for heater $0.123000/kWh\n", + "rate of energy consumption by the burner 3.840000 kW\n", + "the unit cost of utilized energy for burner 0.049000 kWh\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-16 ,Page No.84" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#there is a 0.204% error in the last part of the question due to rounding off the intermidiate steps in the solution\n", + "\n", + "#Constants used\n", + "g=9.81;#acceleration due to gravity in m/s^2;\n", + "\n", + "#Given values\n", + "h=50.0;#Depth of water in m\n", + "m=5000.0;#mass flow rate of water in kg/sec\n", + "Wout=1862.0;#generated electric power in kW\n", + "ngen=0.95;#efficiency of turbine\n", + "\n", + "#calculation\n", + "X=g*h/1000.0;# X stands for the differnce b/w change in mechanical energy per unit mass\n", + "R=m*X;#rate at which mech. energy is supplied to turbine in kW\n", + "nov=Wout/R;#overall efficiency i.e turbine and generator\n", + "print'overall efficiency is %f'%round(nov,2);\n", + "ntu=nov/ngen;#efficiency of turbine\n", + "print'efficiency of turbine is %f'%round(ntu,2);\n", + "Wsh=ntu*R;#shaft output work\n", + "print'shaft power output %i kW'%round(Wsh,0)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "overall efficiency is 0.760000\n", + "efficiency of turbine is 0.800000\n", + "shaft power output 1960 kW\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-17 ,Page No.85" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "Pstd=4520.0;\n", + "Phem=5160.0;#prices of std and high eff motor in USD\n", + "R=60*0.7457;#rated power in kW from hp\n", + "OpHrs=3500.0;#Operating hours\n", + "Lf=1.0;#Load Factor\n", + "nsh=0.89;#efficiency of shaft\n", + "nhem=0.932;#efficiency of high eff. motor\n", + "CU=0.08;#per unit cost in $\n", + "\n", + "#calculation\n", + "PS=R*Lf*(1/nsh-1/nhem);#Power savings = W electric in,standard - W electric in,efficient\n", + "ES=PS*OpHrs;#Energy savings = Power savings * Operating hours\n", + "print'Energy savings %i kWh/year'%ES;\n", + "CS=ES*CU;\n", + "print'Cost savings per year $%i'%CS;\n", + "EIC=Phem-Pstd;#excess intial cost\n", + "Y=EIC/CS;\n", + "print'simple payback period %f years'%round(Y,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy savings 7929 kWh/year\n", + "Cost savings per year $634\n", + "simple payback period 1.000000 years\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-18 ,Page No.91" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given values\n", + "#NOx details\n", + "m1=0.0047;#emissions of gas furnaces of NOx in kg/therm\n", + "N1=18*10**6;#no. of therms per year \n", + "#CO2 details\n", + "m2=6.4;#emissions of gas furnaces of CO2 in kg/therm\n", + "N2=18*10**6;#no. of therms per year \n", + "\n", + "#Calculation\n", + "NOxSav=m1*N1;\n", + "print'NOx savings %f kg/year'%round(NOxSav,1);\n", + "CO2Sav=m2*N2;\n", + "print'CO2 savings %f kg/year'%round(CO2Sav,1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "NOx savings 84600.000000 kg/year\n", + "CO2 savings 115200000.000000 kg/year\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2-19 ,Page No.95" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Constants used\n", + "e=0.95;#Emissivity\n", + "tc=5.67*10**-8;#thermal conductivity in W/m^2 K^4\n", + "\n", + "#Given values\n", + "h=6;#convection heat transfer coefficient in W/m^2 C\n", + "A=1.6;#cross-sectional area in m^2\n", + "Ts=29;#average surface temperature in C\n", + "Tf=20;#room temperature in C\n", + "\n", + "#Calculation\n", + "#convection rate\n", + "Q1=h*A*(Ts-Tf);\n", + "#radiation rate\n", + "Q2=e*tc*A*((Ts+273)**4-(Tf+273)**4);\n", + "Qt=Q1+Q2;\n", + "print'the total rate of heat transfer %f W'%round(Qt,1)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the total rate of heat transfer 168.100000 W\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit