From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- .../Chapter15.ipynb | 686 +++++++++++++++++++++ 1 file changed, 686 insertions(+) create mode 100755 Thermodynamics_An_Engineering_Approach/Chapter15.ipynb (limited to 'Thermodynamics_An_Engineering_Approach/Chapter15.ipynb') diff --git a/Thermodynamics_An_Engineering_Approach/Chapter15.ipynb b/Thermodynamics_An_Engineering_Approach/Chapter15.ipynb new file mode 100755 index 00000000..c167fe73 --- /dev/null +++ b/Thermodynamics_An_Engineering_Approach/Chapter15.ipynb @@ -0,0 +1,686 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 15: Chemical Reactions" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-1 ,Page No.755" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data\n", + "nO2i=20;#intial moles of air \n", + "nC8H18i=1;#intial moles octane\n", + "\n", + "#from Table A-1\n", + "Mair=29;\n", + "MC=12;\n", + "MH=2;\n", + "\n", + "#calculations\n", + "# Chemical Reaction\n", + "# C8H18 + 20(O2+3.76N2)= xCO2 + yH2O + zO2 + wN2\n", + "#by elemental balance of moles\n", + "x=8;\n", + "y=18/2;\n", + "z=20*2-2*x-y;\n", + "w=20*3.76;\n", + "print'kmoles of CO2 %i'%x;\n", + "print'kmoles of H2O %i'%y;\n", + "print'kmoles of O2 %f'%round(z,1);\n", + "print'kmoles of N2 %f'%round(w,1);\n", + "#thus equn becomes\n", + "# C8H18 + 20(O2+3.76N2)= 8CO2 + 9H2O + 7.5O2 +75.2N2\n", + "AF=nO2i*4.76*Mair/(x*MC + y*MH);\n", + "print'air-fuel ratio of combustion process %f kg air/kg fuel'%round(AF,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kmoles of CO2 8\n", + "kmoles of H2O 9\n", + "kmoles of O2 15.000000\n", + "kmoles of N2 75.200000\n", + "air-fuel ratio of combustion process 24.200000 kg air/kg fuel\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-2 ,Page No.757" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data\n", + "P=100;#total pressure in kPa\n", + "\n", + "#from Table A-1\n", + "Mair=29.0;\n", + "MC=12.0;\n", + "MH=2.0;\n", + "\n", + "#calculations\n", + "#Chemical reaction\n", + "#C2H6 + 1.2at(1O2 + 3.76) =2CO2 + 3H2O + 0.2athO2 + (1.2*3.76)athN2\n", + "#ath is the stoichiometric coefficient for air\n", + "#Oxygen balance gives\n", + "# 1.2ath = 2 + 1.5 + 0.2ath\n", + "ath=(2+1.5)/(1.2-0.2);\n", + "AF=(1.2*ath)*4.76*Mair/(2*MC+3*MH);\n", + "print'air-fuel ratio of combustion process %f kg air/kg fuel'%round(AF,1);\n", + "#C2H6 + 4.2(O2 + 3.76N2) = 2CO2 + 3H2O + 0.7O2 + 15.79N2;\n", + "Nprod=2+3+0.7+15.79;\n", + "#for dew point water vapour condenses\n", + "Nv=3;\n", + "Pv=Nv/Nprod*P;\n", + "#at this Pv\n", + "Tdp=52.3;\n", + "print'the dew-point %f C'%Tdp\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "air-fuel ratio of combustion process 19.300000 kg air/kg fuel\n", + "the dew-point 52.300000 C\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-3 ,Page No.758" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data\n", + "P=101.325;#total pressure in kPa\n", + "RH=0.8;#realtive humidity\n", + "T1=20;#tempearture of air in C\n", + "\n", + "#from Table A-4\n", + "Psat=2.3392;\n", + "\n", + "#calculations\n", + "#consedering 1 kmol of fuel\n", + "# 0.72CH4 + 0.09H2 + 0.14N2 + 0.02O2 + 0.03CO2 + ath(O2 + 3.76N2) = xCO2 + yH2O + zN2\n", + "#element balance\n", + "x=0.72+0.03\n", + "y=(0.72*4+0.09*2)/2;\n", + "ath=x+y/2-0.02-0.03;\n", + "z=0.14+3.76*ath;\n", + "Pv=RH*Psat;\n", + "# Nv,air = Pv,air/Ptotal * Ntotal\n", + "Nvair=Pv/P*6.97/(1-(Pv/P));\n", + "#0.72CH4 + 0.09H2 + 0.14N2 + 0.02O2 + 0.03CO2 + 1.465(O2 + 3.76N2) + 0.131H20 = 0.75CO2 + 1.661H2O + 5.648N2\n", + "Pvprod=1.661/8.059*P;\n", + "#at this Pvprod\n", + "Tdp=60.9;\n", + "print'the dew-point %f C'%Tdp" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the dew-point 60.900000 C\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-4 ,Page No.760" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data\n", + "Pprod=100;#total pressure in kPa\n", + "\n", + "#from Table A-1\n", + "Mair=29;\n", + "MC=12;\n", + "MH=2;\n", + "\n", + "#from Table A-4\n", + "Psat=3.1698;\n", + "\n", + "#calculations\n", + "#consedering 100 kmol of dry products\n", + "# xC8H18 + a (O2 + 3.76N2) = 10.02CO2 + 0.88C0 + 84.48N2 + bH20\n", + "#from mass balamces\n", + "a=83.48/3.76;\n", + "x=(0.88+10.02)/8;\n", + "b=18*x/2;\n", + "# 1.36C8H18 + 22.2 (O2 + 3.76N2) = 10.02CO2 + 0.88C0 + 84.48N2 + 12.24H20\n", + "# 1 mol conversion\n", + "# C8H18 + 16.32 (O2 + 3.76N2) = 7.37CO2 + 4.13C0 + 61.38N2 + 9H20\n", + "AF= 16.32*4.76*Mair/(8*MC+9*MH);\n", + "print'air-fuel ratio of combustion process %f kg air/kg fuel'%round(AF,2);\n", + "# C8H18 + ath (O2 + 3.76N2) = 8CO2 + 9H2O + 3.76athN2\n", + "ath=8+4.5;\n", + "Pth=16.32/ath*4.76/4.76*100;\n", + "print'percentage of theoretical air is %i'%round(Pth);\n", + "Nprod=7.37+0.65+4.13+61.98+9;\n", + "# Nv/Nprod = Pv/Pprod\n", + "Pv=Psat;\n", + "Nw= (Nprod*Pv-9*Pprod)/(Pv-Pprod);\n", + "print'the amount of H2O that condenses as the products %f kmol'%round(Nw,2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "air-fuel ratio of combustion process 19.760000 kg air/kg fuel\n", + "percentage of theoretical air is 131\n", + "the amount of H2O that condenses as the products 6.570000 kmol\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-5 ,Page No.764" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#there is a difference in the answer due to approximation in the textbook\n", + "\n", + "#given data\n", + "T=25;#temperature of octane in C\n", + "\n", + "#from Table A-6\n", + "HCO2=-393520;\n", + "HH2O=-285830;\n", + "HC8H18=-249950;\n", + "\n", + "#calculations\n", + "# C8H18 + ath (O2 + 3.76N2) = 8CO2 + 9H2O + 3.76athN2\n", + "#N2 and O2 are stable elements, and thus their enthalpy of formation is zero\n", + "#hc = Hprod - Hreact\n", + "hc= 8*HCO2 + 9*HH2O - HC8H18;\n", + "print'the enthalpy of combustion of liquid octane %i kJ/kmol'%hc\n", + "print 'or %i kJ/kg C8H18'%round(hc/114,0)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the enthalpy of combustion of liquid octane -5470680 kJ/kmol\n", + "or -47989 kJ/kg C8H18\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-6 ,Page No.767" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given data\n", + "mfuel=0.05;#mass flow rate in kg/min\n", + "\n", + "#from Table A-1\n", + "Mair=29;\n", + "MC=12;\n", + "MH=2;\n", + "\n", + "#calculation\n", + "#stochiometric reaction\n", + "#C3H8 + ath(O2 + 3.76N2) = 3CO2 + 4H2O + 3.76athN2\n", + "#O2 balance\n", + "ath=3+5;\n", + "#50 percent excess air and some CO in the products\n", + "#C3H8 + 7.5(O2 + 3.76N2) = 2.7CO2 + 0.3CO + 4H2O + 2.65O2+ 28.2N2\n", + "AF=7.5*4.76*Mair/(3*MC+4*MH);\n", + "mair=AF*mfuel;\n", + "print'the mass flow rate of air %f kg air/min'%round(mair,2);\n", + "#from property tables\n", + "#C3H8 designated as p\n", + "hfp=-118910;\n", + "#oxygen as o\n", + "hfo=0;\n", + "ho280=8150;\n", + "ho298=8682;\n", + "ho1500=49292;\n", + "#nitrogen as n\n", + "hfn=0;\n", + "hn280=8141;\n", + "hn298=8669;\n", + "hn1500=47073;\n", + "#water as w\n", + "hfw=-241820;\n", + "hw298=9904;\n", + "hw1500=57999;\n", + "#carbondioxode as c\n", + "hfc=-393520;\n", + "hc298=9364;\n", + "hc1500=71078;\n", + "#carbon monoxide as co\n", + "hfco=-110530;\n", + "hco298=8669;\n", + "hco1500=47517;\n", + "qout=1*(hfp)+7.5*(hfo+ho280-ho298)+28.2*(hfn+hn280-hn298)-2.7*(hfc+hc1500-hc298)-0.3*(hfco+hco1500-hco298)-4*(hfw+hw1500-hw298)-2.65*(hfo+ho1500-ho298)-28.2*(hfn+hn1500-hn298);\n", + "#for kg of propane\n", + "qout=qout/44;\n", + "Qout=mfuel*qout/60;\n", + "print'the rate of heat transfer from the combustion chamber %f kW'%round(Qout,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the mass flow rate of air 1.180000 kg air/min\n", + "the rate of heat transfer from the combustion chamber 6.890000 kW\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-7 ,Page No.769" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#the 0.175% error in last part is due to the approximation in the textbook\n", + "\n", + "#given data\n", + "Preact=1.0;#total pressure in kPa\n", + "Treact=77+460.0;#reaction temperature in R\n", + "Tprod=1800.0;#final temperature in R\n", + "\n", + "#constants used\n", + "Ru=1.986;\n", + "\n", + "#calculation\n", + "#CH4 + 3O2 = CO2 + 2H2O + O2\n", + "Nreact=4;\n", + "Nprod=4;\n", + "Pprod=Preact*Nprod/Nreact*Tprod/Treact;\n", + "print'the final pressure in the tank %f atm'%round(Pprod,2);\n", + "#from std. values of heat of formation and ideal gasses in Appendix\n", + "#CH4 as m\n", + "hfm=-32210.0;\n", + "#O2 as o\n", + "hfo=0;\n", + "h537o=3725.1;\n", + "h1800o=13485.8;\n", + "#water as w\n", + "hfw=-104040.0;\n", + "h537w=4528.0;\n", + "h1800w=15433.0\n", + "#carbondioxide as c\n", + "hfc=-169300.0;\n", + "h537c=4027.5;\n", + "h1800c=18391.5;\n", + "Qout=1*(hfm-Ru*Treact)+3*(hfo-Ru*Treact)-1*(hfc+h1800c-h537c-Ru*Tprod)-2*(hfw+h1800w-h537w-Ru*Tprod)-1*(hfo+h1800o-h537o-Ru*Tprod);\n", + "print'the heat transfer during this process %i Btu/lbmol'%round(Qout)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the final pressure in the tank 3.350000 atm\n", + "the heat transfer during this process 309269 Btu/lbmol\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-8 ,Page No.771" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#this invovles EES hence the below code explains a approach with approximation\n", + "\n", + "#calculations\n", + "\n", + "#part - a\n", + "#C8H18 + 12.5 (O2 + 3.76N2) = 8CO+ 9H2O + 47N2\n", + "#from std. values of heat of formation and ideal gasses in Appendix\n", + "#octane as oc\n", + "hfoc=-249950.0;\n", + "#oxygen as o\n", + "hfo=0;\n", + "h298o=8682.0;\n", + "#nitrogen as n\n", + "hfn=0;\n", + "h298n=8669.0;\n", + "#water as w\n", + "hfw=-241820.0;\n", + "h298w=9904.0;\n", + "#carbondioxide as c\n", + "hfc=-393520.0;\n", + "h298c=9364.0;\n", + "#x refers to 8hCO2 + 9hH20 + 47hN2\n", + "xac=1*(hfoc)+8*(h298c-hfc)+9*(h298w-hfw)+47*(h298n-hfn);\n", + "#from EES the Tprod is determined by trial and error\n", + "#at 2400K\n", + "x2400=5660828.0;\n", + "#at 2350K\n", + "x2350=5526654.0;\n", + "#the actual value of x is xac and T can be determined by interpolation\n", + "Tprod=(xac-x2350)*(2400.0-2350.0)/(x2400-x2350)+2350.0;\n", + "print'adiabatic flame temperature for complete combustion with 100 percent theoretical air %i K'%round(Tprod);\n", + "\n", + "#part - b\n", + "#C8H18 + 50 (O2 + 3.76N2) = 8CO+ 9H2O + 37.5O2 + 188N2\n", + "#solved similarly using EES and approximation and interpolation\n", + "#similarly we can solve the part - c \n", + "#the above concept is applied\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "adiabatic flame temperature for complete combustion with 100 percent theoretical air 2395 K\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-9 ,Page No.776" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#from Table A-26E\n", + "#Gibbs function of formation at 77\u00b0F\n", + "gfc=0;#for carbon\n", + "gfo=0;#for oxygen\n", + "gfco=-169680;#for carbondioxide\n", + "\n", + "#calculations\n", + "# C + O2 = CO2\n", + "Wrev=1*gfc+1*gfo-1*gfco;\n", + "print'the reversible work for this process %i Btu'%round(Wrev) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the reversible work for this process 169680 Btu\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-10 ,Page No.777" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "#given values\n", + "T0=298;#combustion chamber temperature in K\n", + "\n", + "#contansts used \n", + "Ru=8.314;#in kJ/kmol K\n", + "\n", + "#calculations\n", + "# CH4 + 3(O2 + 3.76N2) = CO2 + 2H2O + O2 + 11.28N2\n", + "#from std. values of heat of formation and ideal gasses in Appendix\n", + "#methane as m\n", + "hfm=-74850;\n", + "#oxygen as o\n", + "hfo=0;\n", + "h298o=8682;\n", + "#nitrogen as n\n", + "hfn=0;\n", + "h298n=8669;\n", + "#water as w\n", + "hfw=-241820;\n", + "h298w=9904;\n", + "#carbondioxide as c\n", + "hfc=-393520;\n", + "h298c=9364;\n", + "#x refers to hCO2 + 2hH2O + 11.28hN2\n", + "xac=1*(hfm)+1*(h298c-hfc)+2*(h298w-hfw)+11.28*(h298n-hfn);\n", + "#from EES the Tprod is determined by trial and error\n", + "Tprod=1789;\n", + "print'the temperature of the products %i K'%round(Tprod);\n", + "#entropy calculations by using table A-26\n", + "#Si = Ni*(si - Ruln yiPm\n", + "#reactants\n", + "Sm=1*(186.16-Ru*log(1*1));\n", + "So=3*(205.04-Ru*log(0.21*1));\n", + "Sn=11.28*(191.61-Ru*log(.79*1));\n", + "Sreact=Sm+So+Sn;\n", + "#products\n", + "Nt=1+2+1+11.28;#total moles\n", + "yc=1/Nt;\n", + "yw=2/Nt;\n", + "yo=1/Nt;\n", + "yn=11.28/Nt;\n", + "Sc=1*(302.517-Ru*log(yc*1));\n", + "Sw=2*(258.957-Ru*log(yw*1));\n", + "So=1*(264.471-Ru*log(yo*1));\n", + "Sn=11.28*(247.977-Ru*log(yn*1));\n", + "Sprod=Sc+Sw+So+Sn;\n", + "Sgen=Sprod-Sreact;\n", + "print'exergy destruction %i kJ/kmol - K'%round(Sgen);\n", + "Xdestroyed=T0*Sgen/1000;#factor of 1000 for converting kJ to MJ\n", + "print'%i MJ/kmol'%round(Xdestroyed);\n", + "#This process involves no actual work. Therefore, the reversible work and energy destroyed are identical\n", + "Wrev=Xdestroyed;\n", + "print'the reversible work %i MJ/kmol'%round(Wrev)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the temperature of the products 1789 K\n", + "exergy destruction 966 kJ/kmol - K\n", + "288 MJ/kmol\n", + "the reversible work 288 MJ/kmol\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 15-11 ,Page No.778" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "#given values\n", + "Tsurr=298;#temperature of surroundings in K\n", + "\n", + "#contansts used \n", + "Ru=8.314;#in kJ/kmol K\n", + "\n", + "#calculations\n", + "\n", + "#part - a\n", + "# CH4 + 3(O2 + 3.76N2) = CO2 + 2H2O + O2 + 11.28N2\n", + "#The amount of water vapor that remains in the products is determined as in Example 15\u20133\n", + "Nv=0.43;#moles of water vapour\n", + "Nw=1.57;#moles of water in liquid\n", + "#hf values\n", + "#methane as m\n", + "hfm=-74850;\n", + "#carbondioxide as c\n", + "hfc=-393520;\n", + "#water vapour as v\n", + "hfv=-241820;\n", + "#water in liquid as w\n", + "hfw=-285830;\n", + "Qout=1*hfm-1*hfc-Nv*hfv-Nw*hfw;\n", + "print'Qout = %i kJ/kmol'%round(Qout)\n", + "\n", + "#part - b\n", + "#entropy calculations by using table A-26\n", + "#Si = Ni*(si - Ruln yiPm\n", + "#reactants\n", + "Sm=1*(186.16-Ru*log(1*1));\n", + "So=3*(205.04-Ru*log(0.21*1));\n", + "Sn=11.28*(191.61-Ru*log(.79*1));\n", + "Sreact=Sm+So+Sn;\n", + "#products\n", + "Nt=Nv+1+1+11.28;#total moles\n", + "yw=1;\n", + "yc=1/Nt;\n", + "yv=Nv/Nt;\n", + "yo=1/Nt;\n", + "yn=11.28/Nt;\n", + "Sw=Nw*(69.92-Ru*log(yw*1));\n", + "Sc=1*(213.80-Ru*log(yc*1));\n", + "Sv=Nv*(188.83-Ru*log(yv*1));\n", + "So=1*(205.04-Ru*log(yo*1));\n", + "Sn=11.28*(191.61-Ru*log(yn*1));\n", + "Sprod=Sc+Sw+So+Sn+Sv;\n", + "Sgen=Sprod-Sreact+Qout/Tsurr;\n", + "print'Sgen = %i kJ/kmol - K'%round(Sgen);\n", + "Xdestroyed=Tsurr*Sgen/1000;#factor of 1000 for converting kJ to MJ\n", + "print'exergy destruction %i MJ/kmol'%round(Xdestroyed);\n", + "#This process involves no actual work. Therefore, the reversible work and energy destroyed are identical\n", + "Wrev=Xdestroyed;\n", + "print'the reversible work %i MJ/kmol'%round(Wrev)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Qout = 871406 kJ/kmol\n", + "Sgen = 2746 kJ/kmol - K\n", + "exergy destruction 818 MJ/kmol\n", + "the reversible work 818 MJ/kmol\n" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit