From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- .../Chapter6_1.ipynb | 308 +++++++++++++++++++++ 1 file changed, 308 insertions(+) create mode 100755 Thermodynamics:_From_concepts_to_applications/Chapter6_1.ipynb (limited to 'Thermodynamics:_From_concepts_to_applications/Chapter6_1.ipynb') diff --git a/Thermodynamics:_From_concepts_to_applications/Chapter6_1.ipynb b/Thermodynamics:_From_concepts_to_applications/Chapter6_1.ipynb new file mode 100755 index 00000000..4db4d31d --- /dev/null +++ b/Thermodynamics:_From_concepts_to_applications/Chapter6_1.ipynb @@ -0,0 +1,308 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:de09a4c2813282719223c840622b4f97d21f59c5103e9a20c830f4005781fd9e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter6 -Control volume" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example1-pg 83" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate diameter for given variable\n", + "##initialisation of variables\n", + "R= 8.314 ##J/mol K\n", + "M= 29 ##gms\n", + "T= 80 ##C\n", + "p= 104 ##/kPa\n", + "v= 30 ##m/sec\n", + "m= 8000 ##kg/h\n", + "##CALCULATIONS\n", + "V= R*(273.15+T)/(M*p)\n", + "A= m*V/(3600*v)\n", + "D=math.sqrt(4*A/math.pi)\n", + "##RESULTS\n", + "print'%s %.5f %s'%('diameter = ',D,'m^2')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "diameter = 0.30301 m^2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example2-pg 88" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate intial areas\n", + "##initialisation of variables\n", + "R= 8.314 ##J/mol K\n", + "M= 29. ##gms\n", + "T1= 230. ##C\n", + "p1= 30. ##/bar\n", + "k= 1.4\n", + "T2= 180. ##C\n", + "v1= 10. ##m/s\n", + "p2= 20. ##bar\n", + "m2= 0.84 ##kg/s\n", + "##CALCULATIONS\n", + "V1= R*(273.15+T1)/(M*p1*100)\n", + "cp= k*R/((k-1)*M)\n", + "A= m2*V1*10*10*10*10/v1\n", + "v2= math.sqrt(v1*v1+2*cp*10*10*10*(T1-T2))\n", + "V2= R*(273.15+T2)/(M*p2*100)\n", + "A2= m2*V2*10*10*10*10/v2\n", + "##RESULTS\n", + "print'%s %.1f %s'%('inlet area =',A,'cm^2')\n", + "print'%s %.2f %s'%('inlet area =',A2,'cm^2')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "inlet area = 40.4 cm^2\n", + "inlet area = 1.72 cm^2\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example3-pg 89" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate quantity x and specific volume\n", + "##initialisation of variables\n", + "h= 2676.2 ##kJ/kg\n", + "hf= 721.11 ##kJ/kg\n", + "hg= 2679.1 ##kJ/kg\n", + "vf= 0.001115 ##m^3/kg\n", + "vg= 0.2404 ##m^3/kg\n", + "##CALCULATIONS\n", + "x= (h-hf)/(hg-hf)\n", + "v1= vf+x*(vg-vf)\n", + "##RESULTS\n", + "print'%s %.4f %s'%('quantity =',x,'')\n", + "print'%s %.4f %s'%('specific volume = ',v1,'m^3/kg')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "quantity = 0.9985 \n", + "specific volume = 0.2400 m^3/kg\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example4-pg 92" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate heat pump and reate heat interaction and work of the turbine and at another point rate of heat interaction and all four areas at given poin\n", + "##initialisation of variables\n", + "h4= 419.05 ##kJ/kg\n", + "h1= 434.92 ##kJ/kg\n", + "m= 2.5 ##kg/s\n", + "h2= 3272.4 ##kJ/kg\n", + "h3= 2601.7 ##kJ/kg\n", + "v1= 0.001401 ##m^3/kg\n", + "V1= 5 ##m/s\n", + "v2= 0.03817 ##m^3/kg\n", + "V2= 20. ##m/s\n", + "v3= 0.8415 ##m^3/kg\n", + "V3= 100. ##m/s\n", + "v4= 0.00104 ##m^3/kg\n", + "V4= 5 ##m/s\n", + "##CALCULATIONS\n", + "W41= m*(h4-h1)\n", + "Q12= m*(h2-h1)\n", + "W23= m*(h2-h3)\n", + "Q34= m*(h4-h3)\n", + "A1= m*v1*10*10*10*10/V1\n", + "A2= m*v2*10*1010*10/V2\n", + "A3= m*v3*10*1010*10/V3\n", + "A4= m*v4*10*1010*10/V4\n", + "##RESULTS\n", + "print'%s %.1f %s'%('rate of pump =',W41,'kW')\n", + "print'%s %.f %s'%('rate of heat ineraction =',Q12,'kW')\n", + "print'%s %.1f %s'%('rate of work of the turbine =',W23,'W')\n", + "print'%s %.f %s'%('rate of heat ineraction =',Q34,'kW')\n", + "print'%s %.2f %s'%('area =',A1,'cm^2')\n", + "print'%s %.2f %s'%('area =',A2,'cm^2')\n", + "print'%s %.2f %s'%('area =',A3,'cm^2')\n", + "print'%s %.2f %s'%('area =',A4,'cm^2')\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "rate of pump = -39.7 kW\n", + "rate of heat ineraction = 7094 kW\n", + "rate of work of the turbine = 1676.8 W\n", + "rate of heat ineraction = -5457 kW\n", + "area = 7.00 cm^2\n", + "area = 481.90 cm^2\n", + "area = 2124.79 cm^2\n", + "area = 52.52 cm^2\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example5-pg 96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate mass of helium and temperature of helium\n", + "##initialisation of variables\n", + "m1= 0.03 ##kg\n", + "R= 8.314 ##J/mol K\n", + "T1= 300. ##C\n", + "p1= 120. ##kPa\n", + "k= 5./3.\n", + "M=4. ##kg\n", + "p2= 600. ##kPa\n", + "##CALCULATIONS\n", + "V= m1*R*(273.15+T1)/(p1*M)\n", + "m2= m1*((p2/p1)+k-1)/k\n", + "T2= p2*V*M/(m2*R)\n", + "##RESULTS\n", + "print'%s %.3f %s'%('mass of helium =',m2,'kg')\n", + "print'%s %.1f %s'%('temperature of helium =',T2,'K')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "mass of helium = 0.102 kg\n", + "temperature of helium = 842.9 K\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Eaxmple 6-pg97" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate volume of container and pressure\n", + "##initialisation of variables\n", + "m1= 0.03 ##kg\n", + "v1= 2.1977 ##m^3/kg\n", + "h2= 3073.8 ##kJ/kg\n", + "h1= 3061.6 ##kJ/kg\n", + "p2= 600. ##kPa\n", + "p1= 120. ##kPa\n", + "##CALCULATIONS\n", + "V=m1*v1\n", + "r= ((h2-h1)/v1)+p2-p1\n", + "##RESULTS\n", + "print'%s %.5f %s'%('volume of container =',V,'m^3')\n", + "print'%s %.2f %s'%('pressure =',r,'kPa')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "volume of container = 0.06593 m^3\n", + "pressure = 485.55 kPa\n" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit