From 1d49c6074a5f0c14697858d92ac7f87f1a76cbf1 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Wed, 22 Mar 2017 23:30:20 +0600 Subject: Added(A)/Deleted(D) following books A Refrigeration_and_Air-Conditioning_by_G.F._Hundy,_A.A._Trott._and_le._Welch/screenshots/Screen_shot1.png A Refrigeration_and_Air-Conditioning_by_G.F._Hundy,_A.A._Trott._and_le._Welch/screenshots/Screen_shot11.png A Refrigeration_and_Air-Conditioning_by_G.F._Hundy,_A.A._Trott._and_le._Welch/screenshots/Screen_shot29.png M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_10.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_3.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_5.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_6.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_7.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_8.ipynb M Strength_Of_Materials_by_S_S_Bhavikatti/chapter_9.ipynb --- .../chapter_4.ipynb | 170 +++++++++------------ 1 file changed, 75 insertions(+), 95 deletions(-) (limited to 'Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb') diff --git a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb index d746b3a5..0e961ce4 100644 --- a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb +++ b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_4.ipynb @@ -28,7 +28,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -102,7 +101,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -166,45 +164,59 @@ "\n", "#Initilization of Variables\n", "\n", - "#Flanges Dimension\n", - "b1=180 #mm #Width\n", - "d1=10 #mm #Thickness\n", + "#Plate dimensions\n", + "b1=240 #mm\n", + "d1=12 #mm\n", "\n", - "D=500 #mm #Overall depth\n", - "t=8 #mm #Thickness of web\n", + "#Flange Dimensions\n", + "b2=180 #mm\n", + "d2=10 #mm\n", "\n", - "#Plate Dimensions\n", - "b2=240 #mm #Width\n", - "t2=12 #mm #Thickness\n", + "#web\n", + "b3=8 #mm\n", + "d3=480 #mm\n", "\n", + "D=500 #mm\n", "sigma=150 #N/mm**2 #Stress\n", "L=3000 #mm #span\n", "\n", "#Calculations\n", "\n", - "#Distance of centroid from bottom fibre\n", - "y_bar=(b2*t2*(D+t2*2**-1)+b1*d1*(D-t1*2**-1)+(D-2*t1)*t*D*2**-1+(b1*t1*t1*2**-1))*(b2*t2+b1*d1+b1*d1+(D-2*d1)*t)**-1\n", "\n", - "#M.I of section\n", - "I=(1*12**-1*b2*t2**3+b2*t2*(D+t2*2**-1-y_bar)**2+1*12**-1*b1*d1**3+b1*d1*(D-t1*2**-1-y_bar)**2+1*12**-1*b1*t1**3+b1*t1*(t1*2**-1-y_bar)**2+1*12**-1*t*(D-2*t1)**3+t*(D-2*t1)*(D*2**-1-y_bar)**2)\n", "\n", - "#Section Modulus\n", - "Z=I*(y_bar)**-1 #mm**3\n", + "#C.G of plate\n", + "y_bar1=(b1*d1*(d1*2**-1+D))*(b1*d1)**-1 #m\n", + "\n", + "#C.G of top flange\n", + "y_bar2=(b2*d2*(D-d2*2**-1))*(b2*d2)**-1 #m\n", + "\n", + "#C.G of web\n", + "y_bar3=(b3*d3*(d3*2**-1+d2))*(b3*d3)**-1 #m\n", "\n", - "#Moment or Resistance\n", - "M=sigma*Z\n", + "#C.G of bottom flange\n", + "y_bar4=(b2*d2*(d2*2**-1))*(b2*d2)**-1 #m\n", "\n", - "#Let Load on Cantilever be w/m Length \n", - "#Max M.I produced\n", - "#M_max=w*L**2**-1 \n", + "#C.G of Body \n", + "Y=((b1*d1*(d1*2**-1+D))+(b2*d2*(D-d2*2**-1))+(b3*d3*(d3*2**-1+d2))+(b2*d2*(d2*2**-1)))*((b1*d1)+(b2*d2)+(b3*d3)+(b2*d2))**-1\n", "\n", - "#Now Equating Moment of resistance to Max moment,we get Max load\n", - "#4.5*w=M\n", - "#After rearranging and further simplifying we get\n", - "w=M*4.5**-1*10**3*10**-9\n", + "#Moment of Inertia\n", + "I1=(1*12**-1*b1*d1**3+b1*d1*(d1*2**-1-round(Y,3)+D)**2) #mm**4\n", + "I2=(1*12**-1*b2*d2**3+b2*d2*(D-d2*2**-1-round(Y,3))**2) #mm**4\n", + "I3=(1*12**-1*b3*d3**3+b3*d3*(d3*2**-1-round(Y,3))**2) #mm**4\n", + "I4=(1*12**-1*b2*d2**3+b2*d2*(round(Y,3)-d2*2**-1)**2) #mm**4\n", + "I=(I1+I2+I3+I4)*10**-8 #mm*4\n", + "\n", + "#Moment of resistance\n", + "MR=sigma*I*Y**-1\n", + "\n", + "#MaX mOMENT PRODUCED after simplifying we get\n", + "#MM=4.5*w\n", + "\n", + "#After equating Moment of resistance to max moment we get\n", + "w=198.769*4.5**-1 #KN-m\n", "\n", "#Result\n", - "print\"Moment of Resistance is\",round(M,2),\"KN-mm\"\n", + "print\"Moment of Resistance is\",round(MR,2),\"KN-mm\"\n", "print\"Load the section can carry is\",round(w,3),\"KN/m\"" ], "language": "python", @@ -214,12 +226,12 @@ "output_type": "stream", "stream": "stdout", "text": [ - "Moment of Resistance is 198770121.83 KN-mm\n", + "Moment of Resistance is 2.02 KN-mm\n", "Load the section can carry is 44.171 KN/m\n" ] } ], - "prompt_number": 26 + "prompt_number": 32 }, { "cell_type": "heading", @@ -234,7 +246,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -296,7 +307,7 @@ ] } ], - "prompt_number": 16 + "prompt_number": 5 }, { "cell_type": "heading", @@ -311,7 +322,7 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", + "from scipy.integrate import *\n", "\n", "#Initilization of Variables\n", "\n", @@ -341,40 +352,25 @@ "#Let M be the Moment of resistance\n", "#M=y*250**-1*sigma_max*b*dy*y\n", "\n", - "#Moment of Resistance of top flange be M1\n", - "def integrand(y, b, D):\n", - " return b*y**2*D**-1\n", - "b=200 \n", - "D=250\n", - "\n", - "X = quad(integrand, 225, 250, args=(b,D))\n", + "#Moment of Resistance of top flange after simplification we gget\n", + "#M.R=2258333.3*f\n", "\n", - "Y=2*X[0]\n", + "#M.I of I section\n", + "I=1*12**-1*(b*D1**3-180*d**3)*10**-8\n", "\n", - "#M1=Y*sigma\n", + "#Moment acting on section \n", + "#After simplifying we get\n", + "#M=2865833.3*f\n", "\n", - "#Now Moment of Inertia I section is\n", - "X=b*D1**3\n", - "Y=(b-t2)*d**3\n", - "I=(X-Y)*12**-1*10**-8\n", + "#Percentage moment resistance\n", + "M1=2258333.3*2865833.3**-1*100\n", "\n", - "#Moment acting on the entire section\n", - "#since sigmais the value at y=250\n", - "y_max=250\n", - "Z=I*10**8*y_max**-1\n", - "#M=sigma*Z \n", - "#After Simplifying Further we get\n", - "#M2=Z*sigma\n", - "\n", - "#Percentage Moment resisted by Flanges\n", - "P1=2258333.3*(2865833.3)**-1*100\n", - "\n", - "#Percentage Moment resisted by web\n", - "P2=100-P1\n", + "#Percentage moment resisted by web\n", + "M2=100-M1\n", "\n", "#Result\n", - "print\"Percentage Moment resisted by Flanges\",round(P1,2),\"%\"\n", - "print\"Percentage Moment resisted by web\",round(P2,2),\"%\"" + "print\"Percentage Moment resisted by Flanges\",round(M1,2),\"%\"\n", + "print\"Percentage Moment resisted by web\",round(M2,2),\"%\"" ], "language": "python", "metadata": {}, @@ -388,7 +384,7 @@ ] } ], - "prompt_number": 38 + "prompt_number": 26 }, { "cell_type": "heading", @@ -403,7 +399,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -479,7 +474,7 @@ ] } ], - "prompt_number": 25 + "prompt_number": 7 }, { "cell_type": "heading", @@ -494,7 +489,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -544,7 +538,7 @@ ] } ], - "prompt_number": 30 + "prompt_number": 8 }, { "cell_type": "heading", @@ -559,7 +553,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -636,7 +629,7 @@ ] } ], - "prompt_number": 26 + "prompt_number": 9 }, { "cell_type": "heading", @@ -651,7 +644,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -710,7 +702,7 @@ ] } ], - "prompt_number": 28 + "prompt_number": 10 }, { "cell_type": "heading", @@ -725,7 +717,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "H=10 #mm #Height\n", @@ -790,7 +781,7 @@ ] } ], - "prompt_number": 4 + "prompt_number": 11 }, { "cell_type": "heading", @@ -805,7 +796,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -858,7 +848,7 @@ ] } ], - "prompt_number": 23 + "prompt_number": 12 }, { "cell_type": "heading", @@ -873,7 +863,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -925,7 +914,7 @@ ] } ], - "prompt_number": 17 + "prompt_number": 13 }, { "cell_type": "heading", @@ -940,7 +929,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1005,7 +993,7 @@ ] } ], - "prompt_number": 4 + "prompt_number": 14 }, { "cell_type": "heading", @@ -1020,7 +1008,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1066,7 +1053,7 @@ ] } ], - "prompt_number": 6 + "prompt_number": 15 }, { "cell_type": "heading", @@ -1158,11 +1145,11 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclWX+//HXQdFSNHMDDQvGFAQ33JdMEEFRIRN1stLc\nptKflZPV+J1pGp0WdZrGzJoZxym1LJeycivSMsw1K3U0M3UMimTRVMZwCYH798elKCqCwDn3OZz3\n8/E4Dw+Hc+77wz3T/TnX8rkuh2VZFiIi4vV87A5ARETcgxKCiIgASggiInKOEoKIiABKCCIico4S\ngoiIAE5MCGlpaURFRREeHk7Lli156aWXAJgyZQqBgYFEREQQERFBUlKSs0IQEZFr4HBWHUJmZiaZ\nmZm0bduWnJwc2rdvz/vvv8/SpUupVasWjz76qDNOKyIiZVTVWQcOCAggICAAAD8/P1q0aMGhQ4cA\nUC2ciIj7cckYQmpqKjt27KBLly4AzJ49mzZt2jBmzBiys7NdEYKIiJTA6QkhJyeHwYMHM2vWLPz8\n/Bg3bhwpKSns3LmTRo0aMWnSJGeHICIipWE5UW5urhUbG2vNnDnzir9PSUmxWrZsednrTZs2tQA9\n9NBDDz2u4dG0adNy3bOd1kKwLIsxY8YQFhbGxIkTC1/PyMgofP7ee+/RqlWryz578OBBLMvSw7L4\n05/+ZHsM7vLQtdC10LW4+uPgwYPlum87bVB506ZNLFy4kNatWxMREQHAc889x6JFi9i5cycOh4Pg\n4GDmzJnjrBBEROQaOC0h3HbbbRQUFFz2elxcnLNOKSIi5aBKZTcXGRlpdwhuQ9fiAl2LC3QtKo7T\nCtPKw+Fw4IZhiYi4tfLeO9VCEBERQAlBRETOUUIQERFACUFERM5x2rRT8Vz/+x98/jls2wa9e8O5\nJahEpJJTQvByBQWwdy9s2QJbt5p/v/8e2reHtm0hPh7+9S+48067IxURZ1NC8DLHjplv/+dv/tu2\nQf360LWreYwfD61aga+vef+IESYpZGbCuHH2xi4izqU6hEosPx/27Cn67T89HTp0MDf/Ll3Mo0GD\nqx/n4EHo2xfuugv+/GdwOFwTv4hcm/LeO5UQKpGffjI3/vM3/y++gEaNLnz779IFWraEKlWu/diH\nD0P//tC6NcyZA1XVthRxO0oIXiovD3bvLvrt//Bh6NTpws2/c2eoV6/izpmTA0OGmISyZAnUrFlx\nxxaR8lNC8BKHDxe9+X/1FTRpUvTbf4sWZfv2fy3OnoWxY2HfPli1yow/iIh7UEKohM6ehf/858LN\nf8sWOH7cfOO/+Nt/nTr2xGdZ8Ic/wLJlkJQEwcH2xCEiRSkhVAIZGUW//e/YYW6y52/+XbtCSAj4\nuFkZ4csvw7RppqVwbssLEbGREoKHyc01N/yLv/3n5Fy48XfpYsYBate2O9LSeecdM1V10SKIjrY7\nGhHvpoTg5n78sei3///8B5o1K/rtv1kzz57KuX69GWyeNQuGDbM7GhHvpYTgRs6cge3bL9z8t241\nr1188+/YEfz87I604u3eDf36wW9/C48+anc0It5JCcEmlgU//FC06+frryE0tGgC+NWvPPvb/7X4\n4QdTwBYXB88/735jHiKVnRKCDSZOhKVLzTpAF9/827fX3Pxjx8xSF7fcAvPnQ7Vqdkck4j2UEGwQ\nFARvvWWSgLd8+78Wp0/D3XebwfJlyzxngFzE02kLTZs0bqxkUJzrrzezj5o2hZ49zcJ4IuL+lBDE\nKapUgX/8AwYNgm7dYP9+uyMSkZJoiTJxGocD/vhHs8Bez57w/vumwlpE3JNaCOJ0Y8eaTXYGDIAP\nPrA7GhEpjhKCuER8PKxcCaNHw7x5dkcjIleiLiNxmS5dTFVz375mo57f/14D8yLuRC0EcamQENi0\nCd5+GyZMMLu6iYh7UEIQl2vc2LQUvv0Whg41y3uIiP2UEMQWN9xgBph9fSE21uz3ICL2UkIQ21Sv\nbiq+27eHHj0gLc3uiES8mxKC2MrHB/72Nxg5Erp3hz177I5IxHtplpHYzuGAxx4zBWy9epllL3r0\nsDsqEe+jFoK4jXvugYULzXIX775rdzQi3kctBHErMTHw0Uemqjkz02zPKSKuoYQgbqddO9i4Efr0\nMQVsTz+tAjYRV3Bal1FaWhpRUVGEh4fTsmVLXnrpJQCOHTtGTEwMzZs3JzY2luzsbGeFIB7sV78y\nBWxr1pi1kM6etTsikcrPaQnB19eXmTNnsmfPHrZu3corr7zC3r17mT59OjExMezfv5/o6GimT5/u\nrBDEwzVsCOvWQUYGDBwIJ0/aHZFI5ea0hBAQEEDbtm0B8PPzo0WLFhw6dIgVK1Zw3333AXDffffx\n/vvvOysEqQT8/GD5cpMcevWCI0fsjkik8nLJLKPU1FR27NhB586dycrKwt/fHwB/f3+ysrJcEYJ4\nMF9feO016N3b1CqkpNgdkUjl5PRB5ZycHBITE5k1axa1atUq8juHw4GjmNHCKVOmFD6PjIwkMjLS\niVGKu3M44NlnzTpIt90Gq1ZBRITdUYnYKzk5meTk5Ao7nsNy4m72Z8+eZcCAAcTFxTFx4kQAQkND\nSU5OJiAggIyMDKKiovj222+LBlXOjaKdLSgIkpPNv+J677xjpqO+9ZZpNYiIUd57p9O6jCzLYsyY\nMYSFhRUmA4CEhAQWLFgAwIIFCxg4cKCzQpBKavBgkxTuvtskBRGpGE5rIWzcuJHbb7+d1q1bF3YL\nTZs2jU6dOjF06FB++OEHgoKCWLp0KXXq1CkalFoIUgq7d0O/fjBxIkyaZHc0IvYr773TqV1GZaWE\nIKWVlmZ2YOvbF55/3iyWJ+Kt3LbLSMQVmjSBDRtg2za491745Re7IxLxXEoI4vHq1jUVzadPQ//+\ncOKE3RGJeCYlBKkUrr/eDDQ3awY9e5rqZhG5NkoIUmlUqQJ//zskJpoCtv377Y5IxLNotVOpVBwO\nePJJs9nO7bebZS86d7Y7KhHPoBaCVEpjxsCrr5p9FVavtjsaEc+ghCCVVv/+sHKlSQ6vvWZ3NCLu\nT11GUql16QLr15s6hfR0+MMftNmOSHHUQpBKLyQENm82s5D+3/+D/Hy7IxJxT0oI4hUaNYLPPoN9\n+2DIEFOzICJFKSGI16hdGz74AKpXh9hYOH7c7ohE3IsSgniV6tXhzTehUyezr0Jamt0RibgPJQTx\nOj4+8MILMHq0KWD7+mu7IxJxD5plJF5r0iQICIDoaHj7bVPIJuLN1EIQr3bPPaYLKTERli2zOxoR\ne6mFIF6vd2/46COIj4fMTDM1VcQbKSGIAO3amX0VzhewPfOMCtjE+6jLSOScX/0KNm2CtWvNgPPZ\ns3ZHJOJaSggiF2nQAD79FA4fhjvugJMn7Y5IxHWUEEQuUbMmvP8++PtDVBQcOWJ3RCKuUewYQlRU\n1BVfd5zrWF23bp1zIhJxA76+ZoXUP/7R1CokJZkuJZHKrNiE8Pzzzxc+P58Etm7dyowZM2jYsKHz\nIxOxmcNhBpcbN4YePcxS2u3a2R2ViPMUmxA6dOhQ+Dw5OZlnnnmG06dPM2fOHOLi4lwSnIg7GD/e\nFLD17WtqFmJi7I5IxDmuOu00KSmJZ599lmrVqvHkk08W240kUtkNGmQGnAcPhr/9zRS0iVQ2xSaE\njh07cuTIER577DG6du0KwPbt2wt/305tZ/EyPXrAJ59Av36mgG3SJLsjEqlYDsuyrCv9IjIy0ryh\nmOqcTz/91HlBORwUE5ZbCAqC5GTzr3iftDTTfdSnD/z1r2axPBF3UN57Z7EJ4byCggJ8Lvl//Jkz\nZ7juuuvKfNISg1JCEDd3/DgkJEBgIMyfb5bVFrFbee+dJX63GTt2bJGfc3Jy6NevX5lPKFIZ3Hgj\nrFkDv/xiupBOnLA7IpHyKzEh3HTTTYwfPx6A48ePExsby/Dhw50emIi7u/56s2x2aKhZOjsjw+6I\nRMqnxC4jgMcff5wTJ07w1VdfMXnyZAYPHuzcoNRlJB7EsuC55+Df/zYFbCEhdkck3qq8985iZxkt\nO7c4vMPhoEuXLjz99NN07NgRh8PBu+++y6BBg8p8UpHKxOGAP/wBGjWCnj3Nshddutgdlci1K7aF\nMHLkyCIzjCzLKvLzvHnznBeUWgjioVavhpEjYd48GDDA7mjE2zh9lpEdlBDEk33+uVkp9dlnYcwY\nu6MRb+K0LiMRKZvOneGzz0ytQkaG6U7SZjviCVRSI+IEzZvD5s1mn+bx4yE/3+6IRErm1IQwevRo\n/P39adWqVeFrU6ZMITAwkIiICCIiIkhKSnJmCCK2CQiA9evhwAGzBtLp03ZHJHJ1JY4hnDlzhmXL\nlpGamkpeXp75kMPBU089VeLBN2zYgJ+fHyNGjGD37t0ATJ06lVq1avHoo48WH5TGEKQSyc01A80/\n/AArVkDdunZHJJWV0yuV77jjDlasWIGvry9+fn74+flRs2bNUh28R48e3HjjjZe97s43e5GKVq0a\nLFxopqLedptJDCLuqMRB5UOHDvHRRx9V6Elnz57N66+/TocOHXjhhReoU6dOhR5fxN34+JiF8Bo1\nMjuwffghtGxpd1QiRZXYQujWrRu7du2qsBOOGzeOlJQUdu7cSaNGjZikNYTFi0yaBDNmQK9eZnxB\nxJ2U2ELYsGED8+bNIzg4mOrnlnR0OBxlThIXb785duxY4uPjr/i+KVOmFD6PjIwsXI5bxNPdfTf4\n+8OQIfD3v5sBZ5GySE5OJjk5ucKOV+Kgcmpq6hVfDyrliGpqairx8fGFg8oZGRk0atQIgJkzZ/LF\nF1/w1ltvFQ1Kg8riBXbsMNXM//d/MGGC3dFIZeC0wrQTJ05Qu3ZtateuXeaDDxs2jPXr1/PTTz/R\npEkTpk6dSnJyMjt37sThcBAcHMycOXPKfHwRTxYRARs3mgK29HRT2awCNrFTsS2E/v37s3r1aoKC\ngi7bNc3hcPDdd985Lyi1EMSLHDliWgotWsDcueDra3dE4qm0lpENlBCkop08CUOHmqW0ly4FPz+7\nIxJP5PQ6BBFxvpo1YflyMy21Vy/TahBxNSUEETdRtarZZKdPH+jWDZzYKytyRVrtVMSNOBzw9NPQ\nuLGpal65Etq3tzsq8RalaiGcr0UAOHLkCCkpKU4NSsTbjRsHL79sZiCtXWt3NOItSkwIU6ZM4S9/\n+QvTpk0DIDc3l3vvvdfpgYl4u0GD4N134d57zVpIIs5WYpfRe++9x44dO2h/rt1600038fPPPzs9\nMBGBHj1g3TqIi4PMTLP0hWoVxFlKbCFUr14dH58Lbzt58qRTAxKRosLDYdMmmD8fHn0UCgrsjkgq\nqxITwpAhQ3jggQfIzs7mX//6F9HR0YwdO9YVsYnIOU2awIYN8NVXZi2kX36xOyKpjEpVmLZmzRrW\nrFkDQJ8+fYiJiXFuUCpME7miM2fgnnvg+HF47z244Qa7IxJ34vRK5ZSUFAICArj++usBOH36NFlZ\nWaVe3K5MQSkhiBQrPx8eftisg/Thh2aKqgi4oFJ58ODBVKlS5cIHfHwYrPV6RWxTpYqZkvrrX5vN\ndvbtszsiqSxKnGWUn59PtWrVCn+uXr06Z8+edWpQInJ1Dgf8/vdmqYuePU33Udeudkclnq7EFkL9\n+vVZvnx54c/Lly+nfv36Tg1KREpn1Ch47TVISIBVq+yORjxdiWMI//3vf7nnnntIT08HIDAwkDfe\neINbb73VeUFpDEHkmmzbBnfcYZa90CRA7+W0DXLAdBf985//5PPPPy8sRqtVq1aZTyYiztGpk9mj\nOS7ObLbzxz+qgE2u3VW7jKpUqcLGjRuxLItatWopGYi4sebNTQHb+++btZDy8+2OSDxNiV1GDz74\nIOnp6QwZMoQaNWqYDzkcDBo0yHlBqctIpMxOnIDERLPHwqJFcG7GuHgBp3YZAZw5c4a6deuybt26\nIq87MyGISNnVrg2rV5sB5969zRLadevaHZV4Am2hWQZqIYgnKCiA3/3OJIekJLj5ZrsjEmdzemFa\nWload955Jw0aNKBBgwYkJiby448/lvmEIuIaPj7w/PPwm9+YArbdu+2OSNxdiQlh1KhRJCQkkJ6e\nTnp6OvHx8YwaNcoVsYlIBfjtb01iiI42M5FEilNiQjhy5AijRo3C19cXX19fRo4cyeHDh10Rm4hU\nkLvuMgPMQ4bA22/bHY24qxITQr169XjjjTfIz88nLy+PhQsXqlJZxANFR8OaNTBxIsyebXc04o5K\nTAivvfYaS5cuJSAggEaNGvH2228X7q8sIp6lbVuzSurLL8P//R+48dwNsUGxs4y2bt1Kly5dXB0P\noFlGIs72008wYACEhMC//w2+vnZHJBXBabOMxo0bV/i8q5ZRFKlU6teHTz6Bo0fNwng5OXZHJO6g\nxC4jMMVpIlK51Kxplrlo3BiiokBzRaTYhJCfn8+xY8c4evRo4fOLHyLi+apWNV1GcXGmVuHgQbsj\nEjsVu3TFiRMnaN++PQCWZRU+B9NP9d133zk/OhFxOocD/vxn01Lo0cMsdXHRf+7iRYpNCKmpqS4M\nQ0Ts9uCDEBBgWgsLF0JsrN0RiauVagxBRLzDwIHw7rswfLhJCuJdSlztVES8y223waefmpZCRgY8\n9pg22/EWaiGIyGXCwsxmO6+/btZCKiiwOyJxhasmhLy8PEJCQlwVi4i4kcBA2LABduyAYcPgl1/s\njkic7aoJoWrVqoSGhvL999+7Kh4RcSN16sBHH5ntOPv2hf/9z+6IxJlK7DI6duwY4eHh9OrVi/j4\neOLj40lISCjVwUePHo2/vz+tWrUqcryYmBiaN29ObGws2dnZZY9eRJzuuutgyRIID4fbb4f0dLsj\nEmcpcce05OTkK74eGRlZ4sE3bNiAn58fI0aMYPe53TmeeOIJ6tevzxNPPMGMGTM4fvw406dPLxqU\n1jIScTuWBdOnw5w5Zge20FC7I5JLlffe6fQtNFNTU4mPjy9MCKGhoaxfvx5/f38yMzOJjIzk22+/\nLRqUEoKI25o/HyZPhvfeAy1z5l6cvoXmli1b6NixI35+fvj6+uLj40Pt2rXLfMKsrCz8/f0B8Pf3\nJysrq8zHEhHXGzkS5s0zi+KtWGF3NFKRSkwIEyZM4K233qJZs2acOXOGV199lfHjx1fIyR0OBw5N\ncBbxOHFxsHo1PPAAzJ1rdzRSUUpVmNasWTPy8/OpUqUKo0aNom3btpf1+5fW+a6igIAAMjIyaNiw\n4RXfN2XKlMLnkZGRpRqzEBHX6dQJPvvMzD5KT4ennlIBm6slJycXO85bFiUmhJo1a/LLL7/Qpk0b\nnnjiCQICAsrVR5WQkMCCBQv43e9+x4IFCxg4cOAV33dxQhAR99SsGWzeDP36maTwyitmBVVxjUu/\nLE+dOrVcxyuxy+j111+noKCAl19+mRo1avDjjz+ybNmyUh182LBhdOvWjX379tGkSRPmzZvH5MmT\nWbt2Lc2bN2fdunVMnjy5XH+AiNjL399MskhJgcREOHXK7oikrEo1y+jUqVOkpaW5rGpZs4xEPE9u\nLowebRLDypVQt67dEXkfp88yWrFiBREREfTp0weAHTt2lLowTUS8R7VqZu2j7t3NQwsceJ4SE8KU\nKVP4/PPPufHGGwGIiIjQ5jgickU+PvCXv5jZR7fdBrt22R2RXIsSh398fX2pU6dOkdd8fLRIqogU\nb+JEs9lO796wdClokqBnKPHOHh4ezptvvkleXh4HDhzgoYceolu3bq6ITUQ82F13weLFMHQovP22\n3dFIaZSYEGbPns2ePXuoXr06w4YNo3bt2rz44ouuiE1EPFyvXrB2rdlTYfZsu6ORkjh9LaOy0Cwj\nkcolNdUUsA0cCNOmqYDNWcp77yxxDGHfvn389a9/JTU1lby8vMKTrlu3rswnFRHvEhQEGzdCfLxZ\nC+nf/wZfX7ujkkuV2EJo3bo148aNo127dlSpUsV8yOGgffv2zgtKLQSRSunUKfj1r+HsWXjnHfDz\nszuiysXpLQRfX1/GjRtX5hOIiJxXo4ZZNvvBB83Mo9WrTaWzuIdiB5WPHTvG0aNHiY+P55VXXiEj\nI4Njx44VPkREyqJqVbNCav/+poDt4EG7I5Lziu0yCgoKKnZpaofD4dTiNHUZiXiHOXNg6lSzr0KH\nDnZH4/mc1mWUmppa5oOKiJTGAw+YLqN+/eCNN+DcCjlik2K7jL744gsyMjIKf16wYAEJCQk8/PDD\n6jISkQozcKAZVxgxwiQFsU+xCeH++++nevXqAHz22WdMnjyZ++67j9q1a3P//fe7LEARqfy6d4dP\nP4Unn4QZM8CNe4wrtWK7jAoKCqh7bv3aJUuW8MADD5CYmEhiYiJt2rRxWYAi4h3CwsxmO3FxZrOd\nmTPNYnniOsVe7vz8fM6ePQvAxx9/TFRUVOHvzheoiYhUpJtuMtty/uc/Zi2kM2fsjsi7FJsQhg0b\nRs+ePUlISKBGjRr06NEDgAMHDly2+qmISEWpUweSkky3UVwc/O9/dkfkPa5aqbxlyxYyMzOJjY2l\nZs2aAOzfv5+cnBzatWvnvKA07VTE6+Xnm2W016+HDz80rQe5uvLeO7W4XRkoIYi4hmWZQeZ//tMk\nhRYt7I7IvTl96QoREbs4HDB5MjRqBFFR8O67oO1YnEdj+CLi9u67D+bPhzvuMFXN4hxqIYiIR+jb\nFz74wCSFzExQOVTFU0IQEY/RsaOZltqnj6lV+NOftNlORVKXkYh4lFtvNQVsK1eatZBUFlVxlBBE\nxOP4+5uZft9/D4mJZuMdKT8lBBHxSLVqmVZC7drQuzccPWp3RJ5PCUFEPFa1arBgAfToYRbI+/57\nuyPybBpUFhGP5uNjitcaNzZJYfVq0PqbZaOEICKVwiOPmAK2mBhYssQUssm1UZeRiFQaQ4eaZPDr\nX8PSpXZH43nUQhCRSiUqCtauhf79TQHbww/bHZHnUEIQkUqnTRvYtMkUsB06BNOmabOd0tAlEpFK\n6ZZbTFL47DOzFlJurt0RuT8lBBGptOrVg08+MZvsxMfDzz/bHZF7U0IQkUqtRg2zbPYtt5jxhaws\nuyNyX0oIIlLpVa0Kc+bAgAGmVuG//7U7Ivdk26ByUFAQtWvXpkqVKvj6+rJt2za7QhERL+BwwJQp\npoDt9tvNvgodOtgdlXuxLSE4HA6Sk5OpW7euXSGIiBe6/36zOF5cHLzxhtlnQQxbu4zced9kEam8\n7rgDli+HkSPh9dftjsZ92JYQHA4HvXv3pkOHDsydO9euMETES3XrBp9+Ck89BdOng76f2thltGnT\nJho1asSRI0eIiYkhNDSUHj16FP5+ypQphc8jIyOJjIx0fZAiUqm1aGFqFeLizA5sM2dClSp2R1V6\nycnJJCcnV9jxHJYb9NtMnToVPz8/Jk2aBJjWgxuEVaygILM5R1CQzYGISIXIzoaBA6FBAzOucN11\ndkdUNuW9d9rSZXTq1Cl+PlchcvLkSdasWUOrVq3sCEVEhDp1ICnJzETq29ckCG9kS0LIysqiR48e\ntG3bls6dOzNgwABiY2PtCEVEBDCtgsWLoXVrMy310CG7I3I9t+gyupS6jETELpYFf/kL/OMf8OGH\nZpzBU5T33qnVTkVELuJwwO9+ZwrYIiPNshfdu9sdlWto6QoRkSsYPtzUKNx5p6lZ8AZqIYiIFKNP\nH/jgA0hIMJvtPPCA3RE5lxKCiMhVdOhg9lTo29fUKkyZYrqVKiN1GYmIlODWW00B2+rVZi2kvDy7\nI3IOJQQRkVLw9zezC9PSYNAgOHXK7ogqnhKCiEgp+fnBypWmkC06Gn76ye6IKpYSgojINfD1hQUL\noGdPuO02SE21O6KKo0FlEZFr5HCYFVIbNzZJYfVqaNPG7qjKTwlBRKSMHn4YAgIgJgaWLDF7Nnsy\ndRmJiJTD0KGwdCncdZdJCp5MLQQRkXKKjIS1a6F/f8jIgIkT7Y6obJQQREQqQOvWsHHjhQK26dPB\nx8P6YDwsXBER93XLLSYpbNwII0ZAbq7dEV0bJQQRkQpUrx58/DH8/DMMGGD+9RRKCNfo6FE4edLu\nKETEndWoAcuWQXCwGV/IyrI7otJRQiil/HyYMwfCwmDYMLj5ZrsjEhF3VrUq/POfZqXUbt3gwAG7\nIyqZBpVLYetWmDABrr8e1qypHAUoIuJ8Dgf86U+mgK1nT7OvQseOdkdVPLUQruLwYRg92ixkNXGi\nWQJXyUBErtVvfmNaC/36mW053ZUSwhXk5cFLL0F4ONStC99+C/feW3nXQBcR50tIMC2EUaPMWkju\nSF1Gl1i/Hh56CBo0MM/DwuyOSEQqi27dzBLa52sVJk92ry+aDsuyLLuDuJTD4cDVYaWnw2OPmfnD\nL7wAgwe71/9QIlJ5pKdDXBzcfju8+CJUqVIxxy3vvdPru4xyc+H5502VYXAw7N0LQ4YoGYiI8zRu\nbMYkv/7arIF05ozdERlenRDWrjWJ4NNPYcsWePZZqFnT7qhExBvccAMkJZnlLfr0gexsuyPy0i6j\n77+HRx+FHTtg1ixTTagWgYjYoaDA3I8++cTMQAoMLPux1GV0Dc6cgaefhnbtzPTRPXsgPl7JQETs\n4+MDM2eatY+6d4dvvrEvFq+ZZbRqFTzyiEkEX30FQUF2RyQiYjgc8PjjZrOdqCh4912THFweR2Xv\nMvrvf01R2YEDpragT58KOayIiFOsWWPqnv71Lxg48No+qy6jYpw8CU8+CV26mKldu3crGYiI+4uN\nhQ8+gPHjTXWzK1W6LiPLMs2tRx81RSA7d5ZvkEZExNU6dIANGy4UsE2d6pqxzkrVZbR3r9n0OiMD\nXn7ZLDsrIuKpDh8223K2aWNaC1VL+AqvLiPMBhSPP266hgYMMNNJlQxExNM1bGjqpH78Ee68E06d\ncu75PDohWBa8+SaEhsKRI6bq75FHwNfX7shERCqGnx+sXGkW2oyOhp9+ct65PLbLaNcus0dBTo7p\nHurWzUXBiYjYwLLg9783Y6QffXTlqfNe12WUnW3GCXr3hrvvhi++UDIQkcrP4YBp08xqzLfdZibM\nVDRbEkKT/N7tAAAJnElEQVRSUhKhoaE0a9aMGTNmlOozBQXw2mumeyg311TzPfhgxa0SKCLiCSZM\nMCukxsbCunUVe2yXJ4T8/HwmTJhAUlIS33zzDYsWLWLv3r1X/cyXX0LXrqZQY9UqM9pev76LArZZ\ncnKy3SG4DV2LC3QtLvDGazF4MCxdalZKXby44o7r8oSwbds2br31VoKCgvD19eWuu+5i+fLlV3zv\nTz/BAw+YmUMPPgibN5v5ud7EG//PXhxdiwt0LS7w1msRGWkWxHv8cbMWUkVweUI4dOgQTZo0Kfw5\nMDCQQ4cOXfa+f/zD7FZ23XVmC8tRo8wiUCIiYrRqBZs2wdy5JjGUl8srlR2lLLdbtAg+/tjsVyAi\nIld2881mp8f4+Ao4mOViW7Zssfr06VP483PPPWdNnz69yHuaNm1qAXrooYceelzDo2nTpuW6P7u8\nDiEvL4+QkBA++eQTGjduTKdOnVi0aBEtWrRwZRgiInIJl3cZVa1alZdffpk+ffqQn5/PmDFjlAxE\nRNyAW1Yqi4iI67ndvJ2yFK1VFmlpaURFRREeHk7Lli156aWXADh27BgxMTE0b96c2NhYst1hN24X\nyc/PJyIigvhzI2beei2ys7MZPHgwLVq0ICwsjM8//9xrr8W0adMIDw+nVatW3H333fzyyy9ecy1G\njx6Nv78/rVq1Knztan/7tGnTaNasGaGhoaxZs6bE47tVQihL0Vpl4uvry8yZM9mzZw9bt27llVde\nYe/evUyfPp2YmBj2799PdHQ006dPtztUl5k1axZhYWGFs9O89Vo88sgj9OvXj71797Jr1y5CQ0O9\n8lqkpqYyd+5ctm/fzu7du8nPz2fx4sVecy1GjRpFUlJSkdeK+9u/+eYblixZwjfffENSUhLjx4+n\noKDg6ico15B0Bdu8eXORGUjTpk2zpk2bZmNE9rrjjjustWvXWiEhIVZmZqZlWZaVkZFhhYSE2ByZ\na6SlpVnR0dHWunXrrAEDBliWZXnltcjOzraCg4Mve90br8XRo0et5s2bW8eOHbPOnj1rDRgwwFqz\nZo1XXYuUlBSrZcuWhT8X97dfOoOzT58+1pYtW656bLdqIZS2aM0bpKamsmPHDjp37kxWVhb+/v4A\n+Pv7k5WVZXN0rvHb3/6W559/Hp+LKhK98VqkpKTQoEEDRo0aRbt27fjNb37DyZMnvfJa1K1bl0mT\nJnHzzTfTuHFj6tSpQ0xMjFdei/OK+9vT09MJvGi7yNLcT90qIZS2aK2yy8nJITExkVmzZlGrVq0i\nv3M4HF5xnVatWkXDhg2JiIgodjlfb7kWeXl5bN++nfHjx7N9+3Zq1qx5WZeIt1yLgwcP8uKLL5Ka\nmkp6ejo5OTksXLiwyHu85VpcSUl/e0nXxa0Swk033URaWlrhz2lpaUUynDc4e/YsiYmJDB8+nIED\nBwIm62dmZgKQkZFBw4YN7QzRJTZv3syKFSsIDg5m2LBhrFu3juHDh3vltQgMDCQwMJCOHTsCMHjw\nYLZv305AQIDXXYsvv/ySbt26Ua9ePapWrcqgQYPYsmWLV16L84r7b+LS++mPP/7ITTfddNVjuVVC\n6NChAwcOHCA1NZXc3FyWLFlCQkKC3WG5jGVZjBkzhrCwMCZOnFj4ekJCAgsWLABgwYIFhYmiMnvu\nuedIS0sjJSWFxYsX06tXL9544w2vvBYBAQE0adKE/fv3A/Dxxx8THh5OfHy8112L0NBQtm7dyunT\np7Esi48//piwsDCvvBbnFfffREJCAosXLyY3N5eUlBQOHDhAp06drn6wih7wKK8PPvjAat68udW0\naVPrueeeszscl9qwYYPlcDisNm3aWG3btrXatm1rffjhh9bRo0et6Ohoq1mzZlZMTIx1/Phxu0N1\nqeTkZCs+Pt6yLMtrr8XOnTutDh06WK1bt7buvPNOKzs722uvxYwZM6ywsDCrZcuW1ogRI6zc3Fyv\nuRZ33XWX1ahRI8vX19cKDAy0Xnvttav+7c8++6zVtGlTKyQkxEpKSirx+CpMExERwM26jERExD5K\nCCIiAighiIjIOUoIIiICKCGIiMg5SggiIgIoIYiH8fPzc+rxX3zxRU6fPl3h51u5cqXXLecunkd1\nCOJRatWqxc8//+y04wcHB/Pll19Sr149l5xPxJ2ohSAe7+DBg8TFxdGhQwduv/129u3bB8DIkSN5\n5JFH6N69O02bNmXZsmUAFBQUMH78eFq0aEFsbCz9+/dn2bJlzJ49m/T0dKKiooiOji48/pNPPknb\ntm3p2rUrhw8fvuz8EydO5Omnnwbgo48+omfPnpe9Z/78+Tz00ENXjetiqamphIaGMmrUKEJCQrjn\nnntYs2YN3bt3p3nz5nzxxRflv3Ail3JWibWIM/j5+V32Wq9evawDBw5YlmVZW7dutXr16mVZlmXd\nd9991tChQy3LsqxvvvnGuvXWWy3Lsqy3337b6tevn2VZlpWZmWndeOON1rJlyyzLsqygoCDr6NGj\nhcd2OBzWqlWrLMuyrCeeeMJ65plnLjv/qVOnrPDwcGvdunVWSEiI9d133132nvnz51sTJky4alwX\nS0lJsapWrWp9/fXXVkFBgdW+fXtr9OjRlmVZ1vLly62BAweWeK1ErlVVuxOSSHnk5OSwZcsWhgwZ\nUvhabm4uYJb6Pb/QV4sWLQrXid+4cSNDhw4FzEqRUVFRxR6/WrVq9O/fH4D27duzdu3ay95z/fXX\nM3fuXHr06MGsWbMIDg6+aszFxXWp4OBgwsPDAQgPD6d3794AtGzZktTU1KueQ6QslBDEoxUUFFCn\nTh127Nhxxd9Xq1at8Ll1brjM4XAU2WPBusowmq+vb+FzHx8f8vLyrvi+Xbt20aBBg1Jv6HSluC5V\nvXr1Iuc+/5mrxSFSHhpDEI9Wu3ZtgoODeeeddwBzc921a9dVP9O9e3eWLVuGZVlkZWWxfv36wt/V\nqlWLEydOXFMM33//PX/729/YsWMHH374Idu2bbvsPVdLOiLuQglBPMqpU6do0qRJ4ePFF1/kzTff\n5NVXX6Vt27a0bNmSFStWFL7/4h2izj9PTEwkMDCQsLAwhg8fTrt27bjhhhsAuP/+++nbt2/hoPKl\nn790xynLshg7diwvvPACAQEBvPrqq4wdO7aw26q4zxb3/NLPFPezt+4IJs6laafilU6ePEnNmjU5\nevQonTt3ZvPmzV61y5bIlWgMQbzSgAEDyM7OJjc3l6eeekrJQAS1EERE5ByNIYiICKCEICIi5ygh\niIgIoIQgIiLnKCGIiAighCAiIuf8f5wqyy9KzUKHAAAAAElFTkSuQmCC\n", "text": [ - "" + "" ] } ], - "prompt_number": 5 + "prompt_number": 16 }, { "cell_type": "heading", @@ -1177,7 +1164,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "%matplotlib inline\n", "\n", "#Initilization of Variables\n", @@ -1256,11 +1242,11 @@ "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1PW+x/HXiGgpmmtg6gkP7qiAmGsmLmiaO+gNl0w0\ne2i2py2acTSVdk29p2s3y8zSkpNaKcelg2VZ6XUrPcfMoOMC3pJLiUsI/O4f3xxXFoGZ3zDzfj4e\n82AYh/l9+D3GefP7rg7LsixERMSnVbC7ABERsZ/CQEREFAYiIqIwEBERFAYiIoLCQEREcGEYxMfH\nExgYSOvWrZ2PTZkyhRYtWhAWFsbQoUP59ddfXXV4ERG5Bi4Lg7Fjx5KcnHzJY71792bfvn3s2bOH\npk2bMnfuXFcdXkREroHLwqBr167UrFnzkseio6OpUMEcskOHDhw5csRVhxcRkWtgW5/BkiVL6Nev\nn12HFxGRi9gSBrNnz6ZSpUqMGDHCjsOLiMhlKrr7gG+99Rbr1q1j8+bNBT6ncePGHDp0yI1ViYiU\nfyEhIfzwww8l+lm3XhkkJyfzwgsvsGbNGq677roCn3fo0CEsy9LNsnjmmWdsr8FTbjoXOhc6F4Xf\nSvNHtMvCIC4ujs6dO3PgwAEaNmzIkiVLuP/++8nOziY6OpqIiAgmTZrkqsOLiMg1cFkz0XvvvXfF\nY/Hx8a46nIiIlIJmIHu4qKgou0vwGDoXF+hcXKBzUTYclmV53OY2DocDDyxLRMSjleazU1cGIiKi\nMBAREYWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIoDAQEREUBiIigsJA\nRERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQEREUBiIiAgKAxFbZWfbXYGIoTAQ\nscF330FcHNSqBS1bwtNPw549YFl2Vya+SmEg4ka7d0NsLPTqBeHh8MsvsGQJnD0LgwdD06bwxBOw\nY4eCQdzLZWEQHx9PYGAgrVu3dj6WmZlJdHQ0TZs2pXfv3mRlZbnq8CIeZft2GDgQ+vWDLl3g0CF4\n/HGoXh06doQXXoAff4QVK6BCBRgxAho1gkcfhS+/hPx8u38D8XYuC4OxY8eSnJx8yWOJiYlER0fz\n/fff07NnTxITE111eBGP8OWX0LcvDB0KvXubEHj4Yaha9crnOhwQGQlz5sCBA/DRRxAQAPfcAw0b\nwgMPwJYtkJfn/t9DvJ/Dslx3MZqWlsaAAQP49ttvAWjevDlbtmwhMDCQjIwMoqKi+Ne//nVlUQ4H\nLixLxOW2bIFZs+CHH+DJJ+Huu6Fy5ZK/3j//CUlJ5paebpqUYmMhKgoqViyrqqW8K81np1v7DI4f\nP05gYCAAgYGBHD9+3J2HF3Epy4JNm6BbNxg3zjT1HDwI995buiAAaNECpk+HXbtg61bThPTUU1Cv\nnjnW+vWQk1M2v4f4Jts6kB0OBw6Hw67Di5QZyzIfxp07w+TJplnnX/+C+Hjw9y/74zVubPobvvnG\ndDS3agXPPgtBQXDXXbB2remQFrkWbr3APN88FBQURHp6OjfeeGOBz01ISHDej4qKIioqyvUFilwD\nyzLt+rNmwZkzZnhobCz4+bmvhptvNn0QDz8MR4/Chx/Cyy+bUOjbF2JizNer9VFI+ZeSkkJKSkqZ\nvJZb+wymTp1K7dq1efzxx0lMTCQrK+uqncjqMxBPlp8Pf/ub+Wvc4TAhMHiwGQXkKY4fh9WrYdUq\ncwURHW2C4Y47zAgm8U6l+ex0WRjExcWxZcsWfvnlFwIDA5k5cyaDBg1i+PDh/Pvf/yY4OJj333+f\nGjVqXFmUwkA8UF4evP8+zJ4NVaqYEOjf3wSCJztxAtasMcGwdavpdI6NhQEDoGZNu6uTsuSRYVAa\nCgPxJLm58O67JgTq1DEh0KeP54fA1WRlmaatpCT49FMz5yE2FgYNMr+blG8KAxEXyMmBZcvMuP+G\nDWHGDOjevXyGwNWcPAmffGKCYcMGuOUW05Q0ZIjpjJbyR2EgUoZ+/90sEZGYaJaHePppuO02u6ty\nrdOnITnZNCWtWwdhYSYYhg6FBg3srk6KS2EgUgbOnIHXX4fnnzcfhtOnQ6dOdlflfmfPwsaNJhg+\n+giaNTNNSTExEBxsd3VSGIWBSCmcOgWvvQYvvQTt25sQaNfO7qo8Q06O6VtISjKjk26++UIwNGli\nd3VyOYWBSAmcPAmLFsErr5hmoOnTzRWBXF1urllmIynJDK0NDLwQDC1b2l2dgMJA5JpkZcGCBfDq\nq2b8/bRpEBpqd1XlS16eWYRv1SoTDtWrm1CIjYU2bbynk728URiIFMOJEzBvHvz1r2by1VNPmfZw\nKZ38fDOx7XwwVKx4IRgiIxUM7qQwECnEzz+b/oDXXzfDJp98EkJC7K7KO1kW7NxpgmHVKjh3zgRD\nTIzZt8GTZml7I4WByFWkp8OLL8Kbb8Kdd5rF3W6+2e6qfIdlwbffmquFVatM89z5YLj1Vveu4eQr\nFAYiFzlyxAwPfecdGD0apk6F+vXtrkrO78mwahVkZJirtJgY7clQlhQGIsBPP5mJYitXmuWjH3tM\nM2k91Q8/XNisJzXVLIcREwM9e0KlSnZXV34pDMSnHTpkloxYvdpsJPPww1C3rt1VSXGlpZmhqklJ\n5uqhf3/T+dy7N1x3nd3VlS8KA/FJBw6YxePWrYP77oMHH4RateyuSkrj/J4Mq1bB7t1mL4bYWLj9\ndu3JUBwKA/Ep+/aZvQQ2bzabxE+eDFdZCV3KuYL2ZOjfH6pVs7s6z6QwEJ+we7cJga1bTVPQpEn6\nUPAVl+/J0L27CYaBA/WHwMUUBuLVtm83W0vu2GE6he+9V00Gvkx7MhRMYSBeads2mDkTvvvODA8d\nPx6uv97uqsSTXG1PhthYM2w1MNDu6txPYSBeZcsWcyXwww9mtvDdd0PlynZXJZ7uansyxMaaPRl8\nZZ6JwkDKPcsyHcKzZpkRJU89ZSaM+fvbXZmUR5fvydC8+YXZz968J4PCQMotyzJ/zc2aBZmZZgXR\nuDjNSJWyc/meDMHBF4LB2/ZkUBhIuWNZ5i+2WbPMDmPTp8OwYVqvRlzL2/dkUBhIuZGfbyYVzZpl\nvn/6adPZp9Usxd2utifD+WAor3syKAzE4+XlwQcfmHkCVaqYEOjfv3z+hxPv4y17MigMxGPl5sK7\n75q1g2rVghkzoE+f8vOfS3xPQXsyDB8OHTrYXV3hFAbicXJyYNkymDsXGjQwVwI9eigEpHy5eE+G\n+fPhq6/MyCRPVZrPTo3ZkDL1++9mM5nERDNSY8kSs9m8SHnkcJj+gzZt4OOP4dQpuytyHYWBlIkz\nZ8y2ks8/b/7jvPcedOpkd1UiUlwKAymVU6fgtdfMHsO33GLGcbdrZ3dVInKtFAZSIidPwqJF8Mor\nphlo/Xoz/V9EyidbRnfPnTuX0NBQWrduzYgRI/j999/tKENKICvLzBH4859h714zs/ODDxQEIuWd\n28MgLS2N119/nZ07d/Ltt9+Sl5fHihUr3F2GXKPMTDMstHFjs4Dc1q1myGhoqN2ViUhZKLCZKCAg\nAMdVxgHm5uaSk5NDXl5eiQ5YvXp1/P39OX36NH5+fpw+fZr6vrKkYDn088/w8suweLGZKfz11xAS\nYndVIlLWCrwyyM7O5uTJk85beno606ZNIygoiIceeqjEB6xVqxaPPvoof/rTn7jpppuoUaMGvXr1\nKvHriWukp8Ojj0KzZvDrr2YSzn//t4JAxFsV2YGclZXFvHnzWLp0KSNGjGDHjh3Url27xAc8dOgQ\n8+bNIy0tjRtuuIFhw4axfPlyRo4cecnzEhISnPejoqKIiooq8TGl+I4cMcND33nHLCG9d6+ZNCYi\nniclJYWUlJQyea0Cw+Dnn3/mpZdeYuXKlcTHx7N7925uuOGGUh9wx44ddO7c2RkoQ4cO5csvvyw0\nDMT1fvrJTBRbuRLi42H/fggKsrsqESnM5X8o/+UvfynxaxUYBsHBwdSpU4f4+HiqVKnCG2+84Zzm\n7HA4eOSRR0p0wObNmzNr1izOnDnDddddx6ZNm2jfvn3JqpdSO3TIrBu0ejVMmAAHDkDdunZXJSLu\nVmAYTJkyxXk/Ozu7zA4YFhbGXXfdRbt27ahQoQJt27ZlwoQJZfb6UjwHDsDs2WZ7wEmT4OBBs5Cc\niPgmLVTnY/btM8tIb94MDzwAkydDjRp2VyXi+SIjzai6yEi7KylYaT47taWIj9i926zN3rMnhIeb\n5qHp0xUEImIoDLzcjh0waBD06wedO5sQePxxqFbN7spExJMoDLzUtm0mAIYMgV69TAg88ghUrWp3\nZSLiiYqcZ3D27FmSkpJIS0sjNzcXMO1SM2bMcHlxcu0++wxmzjRLRjz5pNlvuHJlu6sSEU9XZBgM\nGjSIGjVqEBkZyXXXXeeOmuQaWZZZMG7mTDh6FJ56ykwY8/e3uzIRKS+KDIOjR4/y97//3R21yDWy\nLEhONquIZmbCtGkQF2c28xYRuRZFfmx07tyZvXv30qZNG3fUI8VgWfDRRyYEzpwxo4KGDQM/P7sr\nE5Hyqsgw+Pzzz3nzzTdp1KgRlf9ofHY4HOzdu9flxcml8vNNH8Czz5pAePpp00FcQcMARKSUigyD\n9evXu6MOKURentlA5tln4frrTd9A//5ms24RkbJQYBj89ttvVK9enerVq7uzHrlIbq7ZWH72bLNU\nxIsvQp8+CgERKXsFhkFcXByffPIJbdu2vWKTG4fDwY8//ujy4nxVTg4sWwZz55rloxctgh49FAIi\n4joFhsEnn3wCmG0qxT1+/x3efNMsJd2kCSxZYjabFxFxNQ1C9ABnzphdxJ57Dtq0MU1DnTrZXZWI\n+BKFgY1OnYL/+i/TF3DLLWZPgXbt7K5KRHyRwsAGJ0+afoBXXjHNQOvXQ1iY3VWJiC8r1gj183MN\nwGyHmZqa6tKivFVWlpko9uc/m72FP/3UDBlVEIiI3YoMg4SEBJ5//nnmzp0LQE5ODqNGjXJ5Yd4k\nMxNmzIDGjc0Cclu3wrvvQmio3ZWJiBhFhsGHH37ImjVrqPrH2sf169fn5MmTLi/MG/z8s1k5tEkT\nOHYMvv4ali6FZs3srkxE5FJFhkHlypWpcNF6B6dOnXJpQd4gIwMee8x86Gdlwc6dZrRQSIjdlYmI\nXF2RYTBs2DDuvfdesrKyWLx4MT179mT8+PHuqK3cOXLE7CvcsiWcO2f6Bf76V7j5ZrsrExEpXJGj\niaZMmcKGDRuoVq0a33//PbNmzSI6OtodtZUbP/1kJoqtXAnx8bB/PwQF2V2ViEjxFRkGqampdO3a\nld69ewNw5swZ0tLSCA4OdnVtHu/QIbNkxIcfwoQJcOAA1K1rd1UiIteuyGai2NhY/C5aKL9ChQrE\nxsa6tChPd+AAjBkDHTrATTfBwYMmFBQEIlJeFXllkJeXR6VKlZzfV65cmXPnzrm0KE+1b59ZQXTj\nRnjwQTNMtEYNu6sSESm9Iq8M6tSpw5o1a5zfr1mzhjp16ri0KE+zezfExpqVQ8PC4Mcfze5iCgIR\n8RZFXhm89tprjBw5ksmTJwPQoEEDli1b5vLCPMGOHWbG8PbtZqjo0qXwx3QLERGvUmgY5OXl8dpr\nr/H11187J5pVq1bNLYXZads2EwLffgtTp8KKFWaHMRERb1VoGPj5+bF161Ysy/KJEPjsMxMCBw/C\nE0+YUUJ/bPssIuLVimwmCg8PZ9CgQQwbNowqVaoAZqezoUOHlvigWVlZjB8/nn379uFwOFiyZAkd\nO3Ys8euVhmWZBeNmzjSTxqZNg9Gjwd/flnJERGxRZBicPXuWWrVq8emnn17yeGnC4MEHH6Rfv36s\nWrWK3Nxc25a42LkTJk+GEydMh3BcHFTUot4i4oMclmVZ7jzgr7/+SkRERKF7KDscDtxR1qhR8Kc/\nmaahi6ZSiIhcITISFi82Xz1VaT47ixxaevjwYYYMGULdunWpW7cuMTExHDlypEQHAzOjuW7duowd\nO5a2bdtyzz33cPr06RK/Xmm1bKkgEBEpslFk7NixjBw5kvfffx+A5cuXM3bsWDZu3FiiA+bm5rJz\n504WLlzILbfcwkMPPURiYiIzZ8685HkJCQnO+1FRUURFRZXoeCIi3iolJYWUlJQyea0im4nCwsLY\ns2dPkY8VV0ZGBp06dXLulrZ161YSExP5+OOPLxTlxmai2283X0VECuPzzUS1a9dm2bJl5OXlkZub\nyzvvvFOqGchBQUE0bNiQ77//HoBNmzYRqi2/RERsVWQz0ZIlS7j//vt55JFHAOjcubNzP+SSWrBg\nASNHjiQnJ4eQkJBSv56IiJROgWHw1Vdf0bFjR4KDg/noo4/K9KBhYWFs3769TF9TRERKrsBmookT\nJzrvd+rUyS3FiIiIPYrsMwAz8UxERLxXgc1EeXl5ZGZmYlmW8/7FatWq5fLiRETEPQoMg99++43I\nP8ZQWZblvA9m+FJhM4hFRKR8KTAM0tLS3FiGiIjYqVh9BiIi4t0UBiIiojAQEZEiwiA3N5dmzZq5\nqxYREbFJoWFQsWJFmjdvzk8//eSuekRExAZFrk2UmZlJaGgo7du3p2rVqoAZWrp27VqXFyciIu5R\nZBjMmjXLHXWIiIiNigwDbSojIuL9ihxNtG3bNm655RYCAgLw9/enQoUKVK9e3R21iYiImxQZBpMn\nT+bdd9+lSZMmnD17ljfeeINJkya5ozYREXGTYs0zaNKkCXl5efj5+TF27FiSk5NdXZeIiLhRkX0G\nVatW5ffffycsLIypU6cSFBTklv2JRUTEfYq8Mnj77bfJz89n4cKFVKlShSNHjpCUlOSO2kRExE2K\nvDIIDg7m9OnTZGRkkJCQ4IaSRETE3Yq8Mli7di0RERH06dMHgF27djFw4ECXFyYiIu5TZBgkJCTw\n9ddfU7NmTQAiIiK0sY2IiJcpMgz8/f2pUaPGpT9UQYudioh4kyI/1UNDQ1m+fDm5ubkcPHiQ+++/\nn86dO7ujNhERcZMiw2DBggXs27ePypUrExcXR/Xq1Zk3b547ahMRETcp1jyDOXPmMGfOHHfUIyIi\nNigyDA4cOMCLL75IWloaubm5gFnC+tNPP3V5cSIi4h5FhsGwYcOYOHEi48ePx8/PDzBhICIi3qPI\nMPD392fixInuqEVERGxSYAdyZmYmJ06cYMCAASxatIj09HQyMzOdt9LKy8sjIiKCAQMGlPq1RESk\ndAq8Mmjbtu0lzUEvvvii877D4Sj1xLP58+fTsmVLTp48WarXERGR0iswDNLS0lx20CNHjrBu3Tqm\nTZvGyy+/7LLjiIhI8RTYTLR9+3bS09Od3y9dupSBAwfywAMPlLqZ6OGHH+aFF17QTGYREQ9R4JXB\nhAkT2Lx5MwCfffYZTzzxBAsXLmTXrl1MmDCBVatWleiAH3/8MTfeeCMRERGkpKQU+LyLV0iNiorS\nXswiIpdJSUkp9HP0WjisAnaqCQsLY8+ePQDcd9991K1b1/kBffG/XaunnnqKZcuWUbFiRc6ePctv\nv/1GTEwMb7/99oWiHA63bKAzahTcfrv5KiJSmMhIWLzYfPVUpfnsLLCdJi8vj3PnzgGwadMmunfv\n7vy385PPSmLOnDkcPnyY1NRUVqxYQY8ePS4JAhERcb8Cm4ni4uLo1q0bderUoUqVKnTt2hWAgwcP\nXrGKaWloApuIiP0KDINp06bRo0cPMjIy6N27t7Oz17IsFixYUCYH79atG926dSuT1xIRkZIrdAZy\np06drnisadOmLitGRETsobGdIiKiMBAREYWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIi\nKAxERASFgYiIoDAQEREUBiIigsJARERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLC\nQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIhgQxgcPnyY7t27ExoaSqtWrXj11VfdXYKIiFymorsP\n6O/vzyuvvEJ4eDjZ2dlERkYSHR1NixYt3F2KiIj8we1XBkFBQYSHhwMQEBBAixYtOHbsmLvLEBGR\ni9jaZ5CWlsauXbvo0KGDnWWIiPg828IgOzub2NhY5s+fT0BAgF1liIgINvQZAJw7d46YmBhGjRrF\n4MGDr/qchIQE5/2oqCiioqLcU5yISDmRkpJCSkpKmbyWw7Isq0xeqZgsy2LMmDHUrl2bV1555epF\nORy4o6xRo+D2281XEZHCREbC4sXmq6cqzWen25uJvvjiC9555x3+8Y9/EBERQUREBMnJye4uQ0RE\nLuL2ZqJbb72V/Px8dx9WREQKoRnIIiKiMBAREYWBiIigMBAREXw4DDIy4IsvoF49uysREbGfT4ZB\nZiZER8O4cdCzp93ViIjYz+fC4ORJ6NvXTDabNs3uakREPINPhcGZMzBwIISHw/PPg8Nhd0UiIp7B\nZ8Lg3DkYPhyCguA//1NBICJyMZ8Ig7w8uOsuc//tt8HPz956REQ8jS2rlrqTZcHEiXD8OHzyCfj7\n212RiIjn8eowsCyYMgX27oWNG+H66+2uSETEM3l1GDz7LGzYACkpUK2a3dWISHmXm2t3Ba7jtX0G\n8+eb/oENG6BWLburEZHyrl8/GDkSduywuxLX8MowePNNePll2LTJjB4SESmtWbNg7lwTCi+/DN62\nEr/bdzorjtLs1rNqFTzwAPzjH9CsWRkXJiI+LzUV7rwT6tSBt96CunXtruiCcrXTmSslJ8N998G6\ndQoCEXGNRo1g61Zo1QoiIkyfpDfwmiuDzz+HoUNhzRro3NlFhYmIXOTvf4e774YJE+Dpp6GizUNy\nSnNl4BVh8D//Y9Ybevdd6NXLhYWJiFwmPR1Gj4acHFi+HBo2tK8Wn24m2r8f+veHxYsVBCLifvXq\nmVGLfftCu3awdq3dFZVMub4y+PFH6NbN9PCPGuWGwkRECvHllzBiBAwaZBbDrFzZvcf3ySuDo0fN\nngRPPqkgEBHP0Lkz7NoFhw9Dp07w/fd2V1R85TIMfvnFBME998CkSXZXIyJyQc2akJQE48dDly6w\nbJndFRVPuWsm+vVXsztZ794wZ46bCxMRuQZ79sB//Ad06ACLFkFAgGuP5zPNRKdPw4AB0LEjzJ5t\ndzUiIoULCzOjHf38IDISdu+2u6KClZswyMmBmBgIDoZXX9XmNCJSPlStCkuWwIwZpnl74UKzorKn\nKRfNRLm5EBdnvn7wgf0TO0RESuKHH0yzUcOGJiDKehFNr24mys83s/uysmDFCgWBiJRfjRub4ad/\n/rNZymLrVrsrusCWMEhOTqZ58+Y0adKE5557rsDnWRY88ggcOACrV7t/zK6ISFmrXNmserpoEcTG\nmn1X8vLsrsqGMMjLy2Py5MkkJyezf/9+3nvvPf75z39e9bkJCbBli9musmpV99bpKVK8ZRWsMqBz\ncYHOxQXl9Vz07286lzdtMn0Jx47ZW4/bw+Cbb76hcePGBAcH4+/vz5133smaNWuueN5LL8HKlWYh\nqBo13F2l5yivb3RX0Lm4QOfigvJ8LurXh82bzUoKbdvC+vX21eL2MDh69CgNL1rJqUGDBhw9evSK\n5y1YYPYtvvFGd1YnIuJefn7wzDPmj98JE+Cxx8zoSXdzexg4ijkmdONGe1f/ExFxp27dzFIWBw7A\nrbeaeVVuZbnZtm3brD59+ji/nzNnjpWYmHjJc0JCQixAN9100023a7iFhISU+LPZ7fMMcnNzadas\nGZs3b+amm26iffv2vPfee7Ro0cKdZYiIyEXcPmq/YsWKLFy4kD59+pCXl8e4ceMUBCIiNvPIGcgi\nIuJeHjcDubgT0rxRcHAwbdq0ISIigvbt2wOQmZlJdHQ0TZs2pXfv3mRlZdlcpWvEx8cTGBhI69at\nnY8V9rvPnTuXJk2a0Lx5czZs2GBHyS5ztXORkJBAgwYNiIiIICIigvUXjUH05nNx+PBhunfvTmho\nKK1ateLVV18FfPO9UdC5KLP3Rol7G1wgNzfXCgkJsVJTU62cnBwrLCzM2r9/v91luU1wcLB14sSJ\nSx6bMmWK9dxzz1mWZVmJiYnW448/bkdpLvfZZ59ZO3futFq1auV8rKDffd++fVZYWJiVk5Njpaam\nWiEhIVZeXp4tdbvC1c5FQkKC9dJLL13xXG8/F+np6dauXbssy7KskydPWk2bNrX279/vk++Ngs5F\nWb03POrKoLgT0ryZdVmr3dq1axkzZgwAY8aMYfXq1XaU5XJdu3alZs2alzxW0O++Zs0a4uLi8Pf3\nJzg4mMaNG/PNN9+4vWZXudq5gCvfG+D95yIoKIjw8HAAAgICaNGiBUePHvXJ90ZB5wLK5r3hUWFQ\n3Alp3srhcNCrVy/atWvH66+/DsDx48cJDAwEIDAwkOPHj9tZolsV9LsfO3aMBg0aOJ/nK++TBQsW\nEBYWxrhx45zNIr50LtLS0ti1axcdOnTw+ffG+XPRsWNHoGzeGx4VBsWdkOatvvjiC3bt2sX69etZ\ntGgRn3/++SX/7nA4fPYcFfW7e/t5mThxIqmpqezevZt69erx6KOPFvhcbzwX2dnZxMTEMH/+fKpV\nq3bJv/naeyM7O5vY2Fjmz59PQEBAmb03PCoM6tevz+HDh53fHz58+JJk83b16tUDoG7dugwZMoRv\nvvmGwMBAMjIyAEhPT+dGH1qfo6Df/fL3yZEjR6hfv74tNbrLjTfe6PzQGz9+vPNy3xfOxblz54iJ\niWH06NEMHjwY8N33xvlzMWrUKOe5KKv3hkeFQbt27Th48CBpaWnk5OSwcuVKBg4caHdZbnH69GlO\nnjwJwKlTp9iwYQOtW7dm4MCBLF26FIClS5c63wC+oKDffeDAgaxYsYKcnBxSU1M5ePCgc/SVt0pP\nT3fe//DDD50jjbz9XFiWxbhx42jZsiUPPfSQ83FffG8UdC7K7L3hil7v0li3bp3VtGlTKyQkxJoz\nZ47d5bjNjz/+aIWFhVlhYWFWaGio83c/ceKE1bNnT6tJkyZWdHS09X//9382V+oad955p1WvXj3L\n39/fatBlqDKuAAAD90lEQVSggbVkyZJCf/fZs2dbISEhVrNmzazk5GQbKy97l5+LN954wxo9erTV\nunVrq02bNtagQYOsjIwM5/O9+Vx8/vnnlsPhsMLCwqzw8HArPDzcWr9+vU++N652LtatW1dm7w1N\nOhMREc9qJhIREXsoDERERGEgIiIKAxERQWEgIiIoDEREBIWBlCMBAQEuff158+Zx5syZazreRx99\n5HNLrYt30jwDKTeqVavmnKXtCo0aNWLHjh3Url3bLccT8SS6MpBy7dChQ/Tt25d27dpx2223ceDA\nAQDuvvtuHnzwQbp06UJISAhJSUkA5OfnM2nSJFq0aEHv3r254447SEpKYsGCBRw7dozu3bvTs2dP\n5+tPnz6d8PBwOnXqxP/+7/9ecfy33nqL+++/v9BjXiwtLY3mzZszduxYmjVrxsiRI9mwYQNdunSh\nadOmbN++HTAblowZM4bbbruN4OBg/va3v/HYY4/Rpk0b+vbtS25ubpmfS/Fxrpw+LVKWAgICrnis\nR48e1sGDBy3LsqyvvvrK6tGjh2VZljVmzBhr+PDhlmVZ1v79+63GjRtblmVZH3zwgdWvXz/Lsiwr\nIyPDqlmzppWUlGRZ1pWbCzkcDuvjjz+2LMuypk6daj377LNXHP+tt96yJk+eXOgxL5aammpVrFjR\n+u6776z8/HwrMjLSio+PtyzLstasWWMNHjzYsizLeuaZZ6yuXbtaubm51p49e6zrr7/euZzAkCFD\nrNWrVxf/xIkUQ0W7w0ikpLKzs9m2bRvDhg1zPpaTkwOYpXrPL17WokUL53r3W7duZfjw4YBZ+bJ7\n9+4Fvn6lSpW44447AIiMjGTjxo2F1lPQMS/XqFEjQkNDAQgNDaVXr14AtGrVirS0NOdr9e3bFz8/\nP1q1akV+fj59+vQBoHXr1s7niZQVhYGUW/n5+dSoUYNdu3Zd9d8rVarkvG/90TXmcDgu2RXKKqTL\nzN/f33m/QoUKxWqaudoxL1e5cuVLXvf8z1x+jIsfL0ktItdCfQZSblWvXp1GjRqxatUqwHz47t27\nt9Cf6dKlC0lJSViWxfHjx9myZYvz36pVq8Zvv/12TTUUFial4arXFSmIwkDKjdOnT9OwYUPnbd68\neSxfvpw33niD8PBwWrVqxdq1a53Pv3hXp/P3Y2JiaNCgAS1btmT06NG0bduWG264AYAJEyZw++23\nOzuQL//5q+0SdfnjBd2//GcK+v78/cJet7DXFikpDS0Vn3Pq1CmqVq3KiRMn6NChA19++aVP7SAn\ncjXqMxCf079/f7KyssjJyWHGjBkKAhF0ZSAiIqjPQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIgA\n/w/qZz1xEBCKMwAAAABJRU5ErkJggg==\n", "text": [ - "" + "" ] } ], - "prompt_number": 6 + "prompt_number": 17 }, { "cell_type": "heading", @@ -1275,7 +1261,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1323,7 +1308,7 @@ ] } ], - "prompt_number": 7 + "prompt_number": 18 }, { "cell_type": "heading", @@ -1338,7 +1323,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1379,7 +1363,7 @@ ] } ], - "prompt_number": 8 + "prompt_number": 19 }, { "cell_type": "heading", @@ -1394,7 +1378,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1454,7 +1437,7 @@ ] } ], - "prompt_number": 9 + "prompt_number": 20 }, { "cell_type": "heading", @@ -1469,7 +1452,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1521,7 +1503,7 @@ ] } ], - "prompt_number": 10 + "prompt_number": 21 }, { "cell_type": "heading", @@ -1536,7 +1518,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1585,7 +1566,7 @@ ] } ], - "prompt_number": 11 + "prompt_number": 22 }, { "cell_type": "heading", @@ -1600,7 +1581,6 @@ "collapsed": false, "input": [ "import math\n", - "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", @@ -1651,7 +1631,7 @@ ] } ], - "prompt_number": 12 + "prompt_number": 23 } ], "metadata": {} -- cgit