From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- .../Solid_State_electronics.ipynb | 145 +++ .../Solid_State_electronics_Ch1.ipynb | 971 --------------------- .../Solid_State_electronics_Ch10.ipynb | 145 --- .../Solid_State_electronics_Ch2.ipynb | 144 --- .../Solid_State_electronics_Ch3.ipynb | 676 -------------- .../Solid_State_electronics_Ch4.ipynb | 950 -------------------- .../Solid_State_electronics_Ch5.ipynb | 331 ------- .../Solid_State_electronics_Ch6.ipynb | 325 ------- .../Solid_State_electronics_Ch9.ipynb | 154 ---- 9 files changed, 145 insertions(+), 3696 deletions(-) create mode 100755 Solid_State_Electronics/Solid_State_electronics.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch1.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch10.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch2.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch3.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch4.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch5.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch6.ipynb delete mode 100755 Solid_State_Electronics/Solid_State_electronics_Ch9.ipynb (limited to 'Solid_State_Electronics') diff --git a/Solid_State_Electronics/Solid_State_electronics.ipynb b/Solid_State_Electronics/Solid_State_electronics.ipynb new file mode 100755 index 00000000..678a41cc --- /dev/null +++ b/Solid_State_Electronics/Solid_State_electronics.ipynb @@ -0,0 +1,145 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10 : The Unijunction Transistor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.1, Page No.249" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# stand off and peak point voltage\n", + "\n", + "import math\n", + "#Variable declaration\n", + "Vbb=20 # in V\n", + "eta=0.6 # instrinsic stand off ratio \n", + "Vb=0.7 # in V\n", + "\n", + "#Calculations\n", + "sov=eta*Vbb # Stand off voltage\n", + "Vp=(eta*Vbb)+Vb;\n", + "\n", + "print(\"(i). Stand off voltage,(V) = %.f \"%sov)\n", + "print(\"(ii). Peak point voltage,Vp(V) = %.1f\"%Vp)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i). Stand off voltage,(V) = 12 \n", + "(ii). Peak point voltage,Vp(V) = 12.7\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.2, Page No. 249" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# time period\n", + "\n", + "import math\n", + "#Variable declaration\n", + "Vbb=20.0 # in V\n", + "C=100.0 # in micro-farad\n", + "R=100.0 # in kilo-ohms\n", + "Vp=10.0 # in V\n", + "\n", + "#Calculations\n", + "eta=Vp/Vbb # instrinsic stand off ratio \n", + "T= ((C*10**-12*R*10**3 *math.log(1/(1-eta))))*10**7 #in micro-seconds\n", + "\n", + "#Result\n", + "print(\"time period of the saw tooth waveform generated is ,(micro-seconds)= %.2f\"%T)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time period of the saw tooth waveform generated is ,(micro-seconds)= 69.31\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10.3, Page No. 249" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# resistance\n", + "\n", + "import math\n", + "#variable declaration\n", + "eta=0.6 # instrinsic stand off ratio \n", + "Rbb=10 # interbase resistance in k-ohm\n", + "\n", + "#Calculations\n", + "Rb1=eta*Rbb\n", + "Rb2=Rbb-Rb1\n", + "\n", + "#Result\n", + "print(\"Resistance,Rb1(k-ohm) = %.f\"%Rb1)\n", + "print(\"Resistance,Rb1(k-ohm) = %.f\"%Rb2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance,Rb1(k-ohm) = 6\n", + "Resistance,Rb1(k-ohm) = 4\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch1.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch1.ipynb deleted file mode 100755 index 1839cfe8..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch1.ipynb +++ /dev/null @@ -1,971 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 1 : Introduction to Solid State Electronics" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.1, Page No. 17" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# ne in the doped silicon\n", - "\n", - "import math\n", - "#Variable declaration\n", - "ni=1.5*10**16 # in m^-3\n", - "nh=4.5*10**22 # in m^-3\n", - "\n", - "#Calculations\n", - "ne=ni**2/nh\n", - "\n", - "#Result\n", - "print(\" ne in the doped silicon is,(m^-3) = %.f * 10^9\"%(ne/10**9))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " ne in the doped silicon is,(m^-3) = 5 * 10^9\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.2, Page No. 17" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "\n", - "ne=8.0*10**19 # in m^-3\n", - "nh=5.0*10**18 # in m^-3\n", - "mu_e=2.3 # in m^2/V-s\n", - "mu_h=.01 # in m^2/V-s\n", - "e=1.6*10**-19 # in V\n", - "\n", - "#Calculations\n", - "p=1/(e*((ne*mu_e)+(nh*mu_h)));\n", - "\n", - "#Result\n", - "print(\"(b) the resistivity,p(ohm-m)= %.1f * 10^-2\"%(p*10**2))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(b) the resistivity,p(ohm-m)= 3.4 * 10^-2\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.3, Page No. 17" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Density\n", - "\n", - "import math\n", - "#Variable declaration\n", - "\n", - "sigma=500.0 # in ohm^-1 m^-1\n", - "mu_e=0.39 # m^2/V-s\n", - "e=1.6*10**-19 # in V\n", - "\n", - "#Calculations\n", - "ne=sigma/(e*mu_e);\n", - "\n", - "#Result\n", - "print(\"number density of donor,ne(m^-3) = %.2f * 10^21\"%(ne*10**-21))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "number density of donor,ne(m^-3) = 8.01 * 10^21\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.4, Page No. 18" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Density\n", - "\n", - "import math\n", - "#Variable declaration\n", - "\n", - "e=1.6*10**-19 # in V\n", - "Pp=10**-2 # p-type silicon in ohm-m\n", - "Pn=10**-2 # n-type silicon in ohm-m\n", - "mu_p=0.048 # holes mobilities in m^2/V-s\n", - "mu_n=0.135 # electrons mobilities in m^2/V-s\n", - "\n", - "#Calculations\n", - "Na=1/(e*mu_p*Pp);\n", - "Nd=1/(e*mu_n*Pn);\n", - "\n", - "#Result\n", - "print(\"(i). the density of impurity,Na (m^-3) = %.1f * 10^22\"%(Na*10**-22))\n", - "print(\"(ii). the density of impurity,Nd (m^-3) = %.2f * 10^21\"%(Nd*10**-21))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i). the density of impurity,Na (m^-3) = 1.3 * 10^22\n", - "(ii). the density of impurity,Nd (m^-3) = 4.63 * 10^21\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.5, Page No. 18" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Resistivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # in V\n", - "n=2.5*10**19 # m^3\n", - "p=n\n", - "ni=n\n", - "mu_p=0.17 # holes mobilities in m^2/V-s\n", - "mu_n=0.36 # electrons mobilities in m^2/V-s\n", - "\n", - "#Calculations\n", - "sgint=e*(ni*(mu_p+mu_n)) #electrical conductivity in mho/metre\n", - "pint=1/sgint #resistivity in ohm-meter\n", - "print(\"electrical conductivity is ,(mho/metre)= %.2f\"%sgint)\n", - "print(\"resistivity is ,(ohm-metre)= %.2f\"%pint)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "electrical conductivity is ,(mho/metre)= 2.12\n", - "resistivity is ,(ohm-metre)= 0.47\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.6, Page No. 18" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Conductivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "\n", - "e=1.6*10**-19 # in V\n", - "ni=1.5*10**16 # in m^3\n", - "mu_p=0.13 # holes mobilities in m^2/V-s\n", - "mu_n=0.05 # electrons mobilities in m^2/V-s\n", - "siat=10.0**8 # number of silicon atoms\n", - "ta=5.0*10**28 # silicon atoms in atoms/m^3\n", - "mu_n2=0.13 # electrons mobilities in m^2/V-s\n", - "siat2=10.0**8 # number of silicon atoms\n", - "ta2=5.0*10**28 # silicon atoms in atoms/m^3\n", - "mu_p2=0.05 # holes mobilities in m^2/V-s\n", - "\n", - "#Calculations\n", - "sgint=e*(ni*(mu_p+mu_n)) # electrical conductivity in mho/m\n", - "Nd=ta/siat # in atoms/m^3\n", - "p= ni**2/Nd # holes concentration in holes/m^3\n", - "n=Nd\n", - "sntype=e*n*mu_n2 # in mho/m\n", - "Na=ta2/siat2 # in atoms/m^3\n", - "n= ni**2/Na # holes concentration in holes/m^3\n", - "sptype=e*Na*mu_p2 # in mho/m\n", - "\n", - "#Calculations\n", - "print(\"(i) electrical conductivity is ,(mhos/m) = %.2f * 10^-4\"%(sgint*10**4))\n", - "print(\"(ii) holes concentration is, (holes/m^3) = %.1f *10^11\"%(p*10**-11))\n", - "print(\"(ii) conductivity is ,(mho/m) = %.1f\"%sntype)\n", - "print(\"(iii) electron concentration is, (holes/m^3)= %.1f * 10^11\"%(n/10**11))\n", - "print(\"(iii) conductivity is ,(mho/m) = %.1f\"%sptype)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) electrical conductivity is ,(mhos/m) = 4.32 * 10^-4\n", - "(ii) holes concentration is, (holes/m^3) = 4.5 *10^11\n", - "(ii) conductivity is ,(mho/m) = 10.4\n", - "(iii) electron concentration is, (holes/m^3)= 4.5 * 10^11\n", - "(iii) conductivity is ,(mho/m) = 4.0\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.7, Page No. 19" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Fermi Level\n", - "\n", - "import math\n", - "#Variable declaration\n", - "#Nd1=Nc*exp^-(Ec-Ef1)/kT ...Formula Used\n", - "Nc=1.0 #assume\n", - "kT=0.03 #eV\n", - "EcEf1=0.5 #position of Fermi level in V\n", - "Nd=1.0 #assume\n", - "Nd1=3*Nd #After tripling the donor concentration\n", - "\n", - "#Calculation\n", - "EcEf2=(EcEf1-(kT*(math.log(Nd1/Nd))))\n", - "print(\"new position of Fermi-level is %.3f eV below conduction band\"%(math.ceil(EcEf2*1000)/1000))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "new position of Fermi-level is 0.468 eV below conduction band\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.8, Page No. 20" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# density\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # in V\n", - "Pp=10**-1 # p-type silicon in ohm-m\n", - "Pn=10**-1 # n-type silicon in ohm-m\n", - "mu_h=0.05 # holes mobilities in m^2/V-s\n", - "mu_e=0.13 # electrons mobilities in m^2/V-s\n", - "\n", - "#Calculations\n", - "Na=1/(e*mu_h*Pp);\n", - "Nd=1/(e*mu_e*Pn);\n", - "\n", - "#Result\n", - "print(\"(i). the density of impurity,Na (m^-3) = %.2f * 10^21\"%(Na/10**21))\n", - "print(\"(ii). the density of impurity,Nd (m^-3) = %.1f * 10^20\"%(Nd/10**20))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i). the density of impurity,Na (m^-3) = 1.25 * 10^21\n", - "(ii). the density of impurity,Nd (m^-3) = 4.8 * 10^20\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.9, Page No. 20" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # in V\n", - "Pp=10**-1 # p-type silicon in ohm-m\n", - "Pn=10**-1 # n-type silicon in ohm-m\n", - "mu_hsi=0.048 # holes mobilities in m^2/V-s\n", - "mu_esi=0.135 # electrons mobilities in m^2/V-s\n", - "nisi=1.5*10**16 # in m^-3\n", - "nesi=nisi\n", - "nhsi=nisi\n", - "mu_hge=0.19 # holes mobilities in m^2/V-s\n", - "mu_ege=0.39 # electrons mobilities in m^2/V-s\n", - "A=1*10**-4 # area in m^2\n", - "nige=2.4*10**19 # in m^-3\n", - "V=2.0 # in V\n", - "l=0.1 # in m\n", - "\n", - "#Calculations\n", - "Isi= e*A*(V/l)*((nesi*mu_esi)+(nhsi*mu_hsi))\n", - "#Current for silicon is calculated wrong in the textbook\n", - "nege=nige\n", - "nhge=nige\n", - "Ige= e*A*(V/l)*((nege*mu_ege)+(nhge*mu_hge))\n", - "\n", - "#Result\n", - "print(\"Total current for silicon is,(A) = %f\"%Isi)\n", - "print(\"Total current for germanium is,(A)= %.2f * 10^-3\"%(math.ceil(Ige*10**5)/100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Total current for silicon is,(A) = 0.000001\n", - "Total current for germanium is,(A)= 4.46 * 10^-3\n" - ] - } - ], - "prompt_number": 41 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.10, Page No. 21" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# hole concentration and conductivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "nh=2*10**21 # acceptor atoms in atoms/m^3\n", - "mu_h=0.17 # mobility of holes in m^2/V-s\n", - "e=1.6*10**-19 # in C\n", - "\n", - "#Calculations\n", - "Na=nh\n", - "sigma=nh*mu_h*e;\n", - "\n", - "#Result\n", - "print(\"hole concentration,Na(atoms/m^3) = %.1f * 10^21\"%(Na/10**21))\n", - "print(\"conductivity,(ohm^-1-m^-1) = %.1f\"%sigma)\n", - "#conductivity is calculated wrong in the book" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "hole concentration,Na(atoms/m^3) = 2.0 * 10^21\n", - "conductivity,(ohm^-1-m^-1) = 54.4\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.11, Page No. 22" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# donor concentration\n", - "\n", - "import math\n", - "#Variable declaration\n", - "p=0.15 # in ohm-m\n", - "mu_e=0.39 # mobility of electron in m^2/V-s\n", - "e=1.6*10**-19 # in C\n", - "\n", - "#Calculations\n", - "Na=1/(e*mu_e*p);\n", - "\n", - "#Result\n", - "print(\"The value of donor concentration,Na(m^-3) = %.2f * 10^20\"%(Na/10**20))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of donor concentration,Na(m^-3) = 1.07 * 10^20\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.12, Page No. 12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "mu_n=0.13 # in m^2/V-s\n", - "mu_p=0.05 # in m^2/V-s\n", - "ni=1.5*10**16 # in m^-3\n", - "e=1.6*10**-19 # in C\n", - "\n", - "#Calculations\n", - "p=1/((e*ni)*(mu_n+mu_p));\n", - "\n", - "#Result\n", - "print(\"The resistivity,p(ohm-m) = %.1f\"%p)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The resistivity,p(ohm-m) = 2314.8\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.13, Page No. 37" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # electron charge in coulombs\n", - "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", - "T=300.0 # in Kelvin\n", - "I=240.0 # in mA\n", - "eta=2.0\n", - "Ve=0.8 # in V\n", - "V=0.7 # in V\n", - "\n", - "\n", - "#Calculations\n", - "Vt=(k*T)/e # in V\n", - "Id=I*math.e**((V-Ve)/(eta*Vt)) #in mA\n", - "Ir=(I/((math.e**(Ve/(eta*Vt)))-1))*10**6\n", - "\n", - "\n", - "#Result\n", - "print(\"(i) Current is ,(mA) = %.f\"%(round(Id)))\n", - "print(\"(ii) reverse saturation current is ,(nA) = %.f\"%(round(Ir)))\n", - "#reverse saturation current is calculated wrong in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) Current is ,(mA) = 35\n", - "(ii) reverse saturation current is ,(nA) = 46\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.14, Page No. 38" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# diode current and voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # electron charge in coulombs\n", - "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", - "T=300.0 # in Kelvin\n", - "Ir1=10**-10 # in A\n", - "Ir2=10**-12 # in A \n", - "V211=0.5 # in V\n", - "\n", - "#Calculations\n", - "Vt=(k*T)/e\n", - "Vt = math.ceil(Vt*1000)/1000\n", - "V21=((Vt)*math.log10(Ir1/Ir2))*2.3026\n", - "V21 = math.floor(V21*10000)/10000\n", - "V2=(1.0/2)*(V21+V211)\n", - "V1=(1.0/2)*(V211-V21)\n", - "I1=Ir2*math.e**(V2/Vt)*10**6\n", - "I2=I1\n", - "\n", - "#Result\n", - "print(\"diode voltage V2 is ,(V) = %.5f\"%V2)\n", - "print(\"diode voltage V1 is ,(V) = %.5f\"%V1)\n", - "print(\"diode current is,(micro-A) = %.4f\"%I1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "diode voltage V2 is ,(V) = 0.30985\n", - "diode voltage V1 is ,(V) = 0.19015\n", - "diode current is,(micro-A) = 0.1498\n" - ] - } - ], - "prompt_number": 50 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.15, Page No. 39" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "e=1.6*10**-19 # electron charge in coulombs\n", - "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", - "T=300.0 # in Kelvin\n", - "Ir1=10**-12 # in A\n", - "Ir2=10**-10 # in A\n", - "It=2.0 # mA\n", - "\n", - "#Calculations\n", - "I21=Ir2/Ir1\n", - "Vt=(k*T)/e # in V\n", - "Vt = math.ceil(Vt*1000)/1000\n", - "I1=It/(1+I21)*10**3 # in micro-A\n", - "I2=It*10**3-I1 # in micro-A\n", - "I1=I2/I21 # in micro-A\n", - "x=((I1*10**-6)/Ir1)\n", - "V=Vt*math.log10(x)*2.3026\n", - "\n", - "#Result\n", - "print(\"diode voltage is ,(V) = %.3f\"%V)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "diode voltage is ,(V) = 0.437\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.16, Page No. 39" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "T=27.0 # degree Celsius\n", - "Tk=273+T # in Kelvin\n", - "e=1.6*10**-19 # electron charge in coulombs\n", - "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", - "J=10**4 # in Amp/m^2\n", - "Jo=200.0 #in mA/m^2\n", - "\n", - "#Calculations\n", - "x=(J/(Jo*10**-3))\n", - "Ve=((math.log(x))*k*Tk)/e\n", - "\n", - "#Result\n", - "print(\"voltage to be applied is ,(V) = %.2f\"%Ve)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "voltage to be applied is ,(V) = 0.28\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.17, Page No. 40" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "V=3.0 # in V\n", - "I=55.0 # in mA\n", - "V2=26.0 # in mV\n", - "\n", - "\n", - "#Calculations\n", - "Rdc=V/(I*10**-3) # in ohm\n", - "Rac=V2/I # in ohm\n", - "\n", - "#Result\n", - "print(\"static resistance is ,(ohm) = %.1f\"%Rdc)\n", - "print(\"dynamic resistance is ,(ohm) = %.2f\"%Rac)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "static resistance is ,(ohm) = 54.5\n", - "dynamic resistance is ,(ohm) = 0.47\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.18, Page No. 40" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "k=1.38*10**-23 # constant\n", - "T=27+273.0 # in K\n", - "eta=2.0\n", - "e=1.6*10**-19 # in C\n", - "Vt=(k*T/e) # in V\n", - "V=0.5 # in V\n", - "Ir=10**-6 # in A\n", - "\n", - "#Calculations\n", - "I=(Ir*10**3*(math.e**(V/(eta*Vt))-1))\n", - "R_dc=V*10**3/I;\n", - "R_ac=(eta*k*T)/(e*I*10**-3);\n", - "\n", - "#Result\n", - "print(\"static resistance,R_dc(ohm) = %.1f\"%R_dc)\n", - "print(\"Dynamic resistance,R_ac(ohm) = %.1f\"%R_ac)\n", - "#answer is wrong in textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "static resistance,R_dc(ohm) = 31.8\n", - "Dynamic resistance,R_ac(ohm) = 3.3\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.19, Page No. 40" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "V=1.2 # in V\n", - "Vk=0.7 # in V\n", - "I_F=100.0 # in mA\n", - "V_R=10.0 # in V\n", - "I_R=1.0 # in micro-A\n", - "I=5.0 # in mA\n", - "eta=2\n", - "\n", - "#Calculations\n", - "R_B=(V-Vk)/(I_F*10**-3)\n", - "R_R=V_R/I_R\n", - "R_ac=eta*26/I\n", - "\n", - "#Result\n", - "print(\"the bulk resistance,R_B(ohm) = %.f\"%R_B)\n", - "print(\"the reverse resistance,R_R(M-ohm) = %.f\"%R_R)\n", - "print(\"ac resistance,R_ac(ohm) = %.1f\"%R_ac)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the bulk resistance,R_B(ohm) = 5\n", - "the reverse resistance,R_R(M-ohm) = 10\n", - "ac resistance,R_ac(ohm) = 10.4\n" - ] - } - ], - "prompt_number": 54 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.20, Page No. 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# capacitance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "epsilon_0=8.85*10**-12 # in farada/m\n", - "K=12.0 # constant for silicon\n", - "A=1*10**-8 # in m^2\n", - "W=5*10**-7 # in m\n", - "\n", - "#Calculations\n", - "epsilon=epsilon_0*K\n", - "Ct=epsilon*A*10**14/W;\n", - "\n", - "#Result\n", - "print(\"the transition capacitance,Ct(PF) = %.1f\"%Ct)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the transition capacitance,Ct(PF) = 212.4\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 1.21, Page No. 41" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "V=0.2 # in V\n", - "I=1.0 # in micro-A\n", - "\n", - "#Calculations\n", - "R_dc=V*10**3/I\n", - "R_ac=26/(I*10**3);\n", - "\n", - "#Result\n", - "print(\"The static resistance,R_ac(k-ohm) = %.f\"%R_dc)\n", - "print(\"the dynamic resistance,R_ac(ohm) = %.3f\"%R_ac)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The static resistance,R_ac(k-ohm) = 200\n", - "the dynamic resistance,R_ac(ohm) = 0.026\n" - ] - } - ], - "prompt_number": 55 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch10.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch10.ipynb deleted file mode 100755 index 678a41cc..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch10.ipynb +++ /dev/null @@ -1,145 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 10 : The Unijunction Transistor" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.1, Page No.249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# stand off and peak point voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vbb=20 # in V\n", - "eta=0.6 # instrinsic stand off ratio \n", - "Vb=0.7 # in V\n", - "\n", - "#Calculations\n", - "sov=eta*Vbb # Stand off voltage\n", - "Vp=(eta*Vbb)+Vb;\n", - "\n", - "print(\"(i). Stand off voltage,(V) = %.f \"%sov)\n", - "print(\"(ii). Peak point voltage,Vp(V) = %.1f\"%Vp)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i). Stand off voltage,(V) = 12 \n", - "(ii). Peak point voltage,Vp(V) = 12.7\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.2, Page No. 249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# time period\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vbb=20.0 # in V\n", - "C=100.0 # in micro-farad\n", - "R=100.0 # in kilo-ohms\n", - "Vp=10.0 # in V\n", - "\n", - "#Calculations\n", - "eta=Vp/Vbb # instrinsic stand off ratio \n", - "T= ((C*10**-12*R*10**3 *math.log(1/(1-eta))))*10**7 #in micro-seconds\n", - "\n", - "#Result\n", - "print(\"time period of the saw tooth waveform generated is ,(micro-seconds)= %.2f\"%T)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "time period of the saw tooth waveform generated is ,(micro-seconds)= 69.31\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 10.3, Page No. 249" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#variable declaration\n", - "eta=0.6 # instrinsic stand off ratio \n", - "Rbb=10 # interbase resistance in k-ohm\n", - "\n", - "#Calculations\n", - "Rb1=eta*Rbb\n", - "Rb2=Rbb-Rb1\n", - "\n", - "#Result\n", - "print(\"Resistance,Rb1(k-ohm) = %.f\"%Rb1)\n", - "print(\"Resistance,Rb1(k-ohm) = %.f\"%Rb2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Resistance,Rb1(k-ohm) = 6\n", - "Resistance,Rb1(k-ohm) = 4\n" - ] - } - ], - "prompt_number": 7 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch2.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch2.ipynb deleted file mode 100755 index e605f938..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch2.ipynb +++ /dev/null @@ -1,144 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2 : Special Purpose Diodes" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.1, Page No. 68" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# maximum current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Pmax=364.0 #dissipation in milliwatt\n", - "Vz=9.1 #in V\n", - "\n", - "#Calculations\n", - "Izmax=Pmax/Vz #in mA\n", - "\n", - "#Result\n", - "print(\"maximum current the diode can handle is ,(mA)= %.f\"%Izmax)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum current the diode can handle is ,(mA)= 40\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2, Page No. 68" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistance\n", - "\n", - "import math\n", - "#Vaariable declaration\n", - "mip=15.0 #in volt\n", - "op=6.8 #output potential in volt\n", - "pd=mip-op #potential difference across series resistor\n", - "Il=5 #load current in mA\n", - "nmip=20 #new maximum input voltage in volt\n", - "pd1=nmip-op #new potential difference across series resistor\n", - "Il1=20 #new load current in mA\n", - "\n", - "#Calculations\n", - "R=((pd1-pd)/((Il1-Il)*10**-3))\n", - "print(\"value of series resistance is,(ohm)= %.1f\"%R)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "value of series resistance is,(ohm)= 333.3\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.3, Page No.69" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Current\n", - "\n", - "import math\n", - "#VAriable declaration\n", - "V=120.0 #in V\n", - "Vz=50.0 #in V\n", - "R=5.0 #in ohm\n", - "Rl=10.0 #in k-ohm\n", - "\n", - "#Calculations\n", - "vd5=V-Vz #voltage drop across 5 ohm resistor\n", - "I5=vd5/R #current through 5 ohm resistor\n", - "Il=Vz/(Rl*10**3) #current through load resistor\n", - "Iz=I5-Il #in A\n", - "\n", - "#Result\n", - "print(\"current through zener diode is ,(A)= %.3f\"%Iz)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "current through zener diode is ,(A)= 13.995\n" - ] - } - ], - "prompt_number": 8 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch3.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch3.ipynb deleted file mode 100755 index e33d4edf..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch3.ipynb +++ /dev/null @@ -1,676 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 3 : Bi Polar Junction Transistor" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.1, Page No. 82" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# varitation in alpha and value of beta \n", - "\n", - "import math\n", - "#Variable declaration\n", - "Beta=50.0 #amlification factor\n", - "dbb=1.0 #percentage variation in degree celsius\n", - "daa=dbb/50.0 #variation in degree celsius\n", - "temp=325.0 #in K\n", - "t=25 #degree celsius\n", - "\n", - "#Calculations\n", - "Beta1=dbb*t\n", - "nBeta=Beta+(Beta1/100)*t\n", - "\n", - "#Result\n", - "print(\"(b) variation in alpha for a silicon BJT is ,(%%/degree-Celsius) = %.2f\"%daa)\n", - "print(\"(c) new value of Beta is , = %.2f\"%nBeta)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(b) variation in alpha for a silicon BJT is ,(%/degree-Celsius) = 0.02\n", - "(c) new value of Beta is , = 56.25\n" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.2, Page No.83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# current amplification factor\n", - "\n", - "import math\n", - "#Variable declaration\n", - "del_Ic=1*10**-3 # in A\n", - "del_Ib=50*10**-6 # in A\n", - "\n", - "#Calcualtions\n", - "Beta=del_Ic/del_Ib;\n", - "print(\"The current amplification factor,Beta = %.f\"%Beta)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The current amplification factor,Beta = 20\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.3, Page No.83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# base current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "alfa=0.88 # Alfa\n", - "Ie=1 # in mA\n", - "\n", - "#Calcualtions\n", - "Ic=alfa*Ie \n", - "I_B=Ie-Ic\n", - "\n", - "#Result\n", - "print(\"Base current,(mA) = %.2f\"%I_B)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Base current,(mA) = 0.12\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.4, Page No.83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# short circuit current gain\n", - "\n", - "import math\n", - "#Variable declaration\n", - "del_Ic=0.95*10**-3 # in A\n", - "del_Ie=1*10**-3 # in A\n", - "\n", - "#Calculations\n", - "alfa=del_Ic/del_Ie;\n", - "print(\"the short circuit current gain, = %.2f\"%alfa)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the short circuit current gain, = 0.95\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.5, Page No. 83" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector and base current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ie=5*10**-3 # in A\n", - "alfa=0.95 # Alfa \n", - "I_co=10*10**-6 # in A\n", - "Ic=((alfa*Ie)+I_co)*10**3\n", - "Ib=(Ie-(Ic*10**-3))*10**6\n", - "print(\"Collector current,(mA) = %.2f\"%Ic)\n", - "print(\"Base current,(micro-A) = %.f\"%Ib)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector current,(mA) = 4.76\n", - "Base current,(micro-A) = 240\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.6, Page No. 84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Ic Ib and Iceo\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ie=5.0 # in mA\n", - "alfa=0.99 # Alfa\n", - "I_co=0.005 # in mA\n", - "\n", - "#CAlculations\n", - "Ic=((alfa*Ie)+I_co)\n", - "Ib=(Ie-Ic)\n", - "Beta=alfa/(1-alfa)\n", - "I_CEO=I_co/(1-alfa)\n", - "\n", - "#Result\n", - "print(\"Ic,(mA) = %.3f\"%Ic)\n", - "print(\"Ib,(micro-A) = %.f\"%(Ib*10**3))\n", - "print(\"Beta = %.f\"%Beta)\n", - "print(\"I_CEO(micro-A) = %.f\"%(I_CEO*10**3))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ic,(mA) = 4.955\n", - "Ib,(micro-A) = 45\n", - "Beta = 99\n", - "I_CEO(micro-A) = 500\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.7, Page No. 84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# change in collector current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "alfa=0.9 # constant\n", - "Del_Ib=4 # in mA\n", - "\n", - "#Caculations\n", - "Beta=alfa/(1-alfa)\n", - "Del_Ic=Beta*Del_Ib;\n", - "\n", - "#Result\n", - "print(\"The change in the collector current,(mA) = %.f\"%Del_Ic)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The change in the collector current,(mA) = 36\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.8, Page No. 84" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# emitter current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Beta=40.0 #beta\n", - "Ib=25.0 # base current in micro-A\n", - "\n", - "#Calculation\n", - "Ic=Beta*Ib;\n", - "Ie=(Ib+Ic)*10**-3\n", - "print(\"Ie,(mA) = %.3f\"%Ie)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ie,(mA) = 1.025\n" - ] - } - ], - "prompt_number": 24 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.9, Page No. 85" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# beta \n", - "\n", - "import math\n", - "#Variable declaration\n", - "alfa=0.98 # constant\n", - "\n", - "#Calculation\n", - "Beta=alfa/(1-alfa)\n", - "\n", - "#Result\n", - "print(\"Beta = %.f\"%Beta)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Beta = 49\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.10, Page No. 85" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# error\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Beta=100.0 # constant\n", - "Ib=20*10**-6 # in A\n", - "I_co=500*10**-9 # in A\n", - "\n", - "#Calculation\n", - "Ic1=((Beta*Ib)+(1+Beta)*I_co)*10**3\n", - "Ic2=(Beta*Ib)*10**3\n", - "Error=(Ic1-Ic2)*100.0/Ic1\n", - "\n", - "#Result\n", - "print(\"The error,(%%) = %.2f\"%Error)\n", - "#answer is wrong in the txtbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The error,(%) = 2.46\n" - ] - } - ], - "prompt_number": 30 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.11, Page No.85" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# change in base current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "alfa=0.98 \n", - "del_Ie=5.0 # in mA\n", - "\n", - "#Calculations\n", - "del_Ic=alfa*del_Ie # in mA\n", - "del_Ib=del_Ie-del_Ic;\n", - "\n", - "#Result\n", - "print(\"change in base current,(mA) = %.1f\"%del_Ib)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "change in base current,(mA) = 0.1\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.12, Page No. 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector current base current and alfa\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ie=8.4 # in mA\n", - "cr=0.8/100 # carriers recombine in base in %\n", - "\n", - "#Calculations\n", - "Ib=cr*Ie\n", - "Ic=Ie-Ib\n", - "alfa=Ic/Ie\n", - "\n", - "#Result\n", - "print(\"(a). The base current,Ib(mA) = %.3f\"%Ib)\n", - "print(\"(b). The collector current,Ic(mA) = %.2f\"%Ic)\n", - "print(\"(c). the value of alfa = %.3f\"%alfa)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a). The base current,Ib(mA) = 0.067\n", - "(b). The collector current,Ic(mA) = 8.33\n", - "(c). the value of alfa = 0.992\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.13, Page No. 86" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# ac current gain\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ie1=20.0 # in mA\n", - "Ie2=15.0 # in mA\n", - "Ib1=0.48 # in mA\n", - "Ib2=0.32 # in mA\n", - "\n", - "#Calculation\n", - "del_Ie=(Ie1-Ie2)*10**-3\n", - "del_Ib=(Ib1-Ib2)*10**-3\n", - "del_Ic=del_Ie-del_Ib\n", - "alfa=del_Ic/del_Ie \n", - "Beta=del_Ic/del_Ib\n", - "\n", - "#Result\n", - "print(\"ac current gain in common base arrangement, = %.2f\"%alfa)\n", - "print(\"ac current gain in common emitter arrangement, = %.f\"%Beta)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ac current gain in common base arrangement, = 0.97\n", - "ac current gain in common emitter arrangement, = 30\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.14, Page No. 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Beta Iceo and collector current \n", - "\n", - "import math\n", - "#Variable declaration\n", - "alfa=0.992 # constant\n", - "Ib=30*10**-6 # in A\n", - "I_CBO=48*10**-9 # in A\n", - "\n", - "#Result\n", - "Beta=alfa/(1-alfa)\n", - "I_CEO=(1+Beta)*I_CBO*10**6\n", - "Ic=((Beta*Ib)+(1+Beta)*I_CBO)*10**3\n", - "\n", - "#Result\n", - "print(\"(a) Beta = %.f\"%Beta)\n", - "print(\"(a) I_CEO (micro-A) = %.f\"%I_CEO)\n", - "print(\"(b) Collector current,Ic(mA) = %.2f\"%(math.floor(Ic*100)/100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Beta = 124\n", - "(a) I_CEO (micro-A) = 6\n", - "(b) Collector current,Ic(mA) = 3.72\n" - ] - } - ], - "prompt_number": 47 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.15, Page No. 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector current alfa and beta\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ie=9.6 # emitter current in mA\n", - "Ib=0.08 # base current in mA\n", - "alfa=0.99\n", - "\n", - "Ic=Ie-Ib\n", - "alfa=math.floor(Ic*100/Ie)/100\n", - "Beta=alfa/(1-alfa)\n", - "\n", - "#Result\n", - "print(\"(a). collector current,Ic(mA) = %.2f\"%Ic)\n", - "print(\"(b). alfa = %.2f\"%alfa)\n", - "print(\"(c). Beta = %.f\"%Beta)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a). collector current,Ic(mA) = 9.52\n", - "(b). alfa = 0.99\n", - "(c). Beta = 99\n" - ] - } - ], - "prompt_number": 51 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 3.16, Page No.87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ib=68*10**-6 # in A\n", - "Ie=30*10**-3 # in A\n", - "Beta=440.0 # constant\n", - "\n", - "#Calculations\n", - "alfa=Beta/(1+Beta)\n", - "Ic=alfa*Ie*10**3\n", - "\n", - "#Result\n", - "print(\"Collector current,Ic(mA) = %.2f\"%Ic)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector current,Ic(mA) = 29.93\n" - ] - } - ], - "prompt_number": 45 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch4.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch4.ipynb deleted file mode 100755 index db0cddeb..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch4.ipynb +++ /dev/null @@ -1,950 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 4: Small signal amplifliers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.1, Page No.118" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Rc=4.7 # in ohm\n", - "Vcc=24.0 # in V\n", - "Ic1=0 # in A\n", - "Ic=1.5 # in mA\n", - "#this is given as 15 mA in textbook which is wrong\n", - "\n", - "#Calculations\n", - "Vce=Vcc-(Ic*Rc*10**-3*10**3)\n", - "Vce1=Vcc-Ic1*Rc\n", - "\n", - "#Result\n", - "print(\"(i) Collector to emitter voltage,Vce(V) = %.2f\"%Vce)\n", - "print(\"(ii) Collector to emitter voltage,Vce(V) = %.f\"%Vce1)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) Collector to emitter voltage,Vce(V) = 16.95\n", - "(ii) Collector to emitter voltage,Vce(V) = 24\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.2, Page No. 118" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# vce\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Beta=100.0\n", - "Rb=200*10**3 # in ohm\n", - "Rc=1*10**3 # in ohm\n", - "Vcc=10.0 # in V\n", - "\n", - "#Calculations\n", - "Ib=Vcc/Rb # in A\n", - "Ic=Beta*Ib # in A\n", - "Vce=Vcc-(Ic*Rc)\n", - "\n", - "#Result\n", - "print(\"Collector to emitter voltage,Vce(V) = %.f\"%Vce)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector to emitter voltage,Vce(V) = 5\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.3, Page No. 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# base resistance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=20.0 # in V\n", - "Vbe=0.73 # in V\n", - "Rc=2.0 # in kilo-ohm\n", - "Icsat= Vcc/Rc #in mA\n", - "Beta=200.0\n", - "\n", - "#RCalculatons\n", - "Ib=(Icsat/Beta)*10**3 # in micro-A\n", - "Rb=((Vcc-Vbe)/(Ib))*10**3 # in kilo-ohm\n", - "\n", - "#Result\n", - "print(\"Rb < %.f kilo-ohm\"%(math.ceil(Rb)))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Rb < 386 kilo-ohm\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4, Page No. 119" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# operating point\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=15.0 # in V\n", - "Rb=200.0 # in k-ohm\n", - "Rc=2.0 # in k-ohm\n", - "Beta=50.0\n", - "\n", - "#Calculations\n", - "Ib=(Vcc/(Rb*10**3+(Beta*Rc*10**3)))*10**6\n", - "Ic=Beta*Ib*10**-3\n", - "Vce=Vcc-(Ic*10**-3*(Rc*10**3))\n", - "\n", - "#Result\n", - "print(\"collector current,Ic(mA) = %.1f\"%Ic)\n", - "print(\"Collector to emitter voltage,Vce(V) = %.f\"%Vce)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "collector current,Ic(mA) = 2.5\n", - "Collector to emitter voltage,Vce(V) = 10\n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.5, Page No. 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# resistor\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=15.0 # in V\n", - "Vce=6.0 # in V\n", - "Rc=3*10**3 # in ohm\n", - "Beta=50.0\n", - "\n", - "\n", - "#Calculations\n", - "Ic=(Vcc-Vce)/Rc\n", - "Ib=Ic/Beta;\n", - "Rb=((Vcc/Ib)-(Beta*Rc))*10**-3\n", - "\n", - "#Result\n", - "print(\"The value of resistoe,Rb(k-ohm) = %.f\"%Rb)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The value of resistoe,Rb(k-ohm) = 100\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.6, Page No. 120" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# operating point\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=12.0 # in V\n", - "Rb1=70.0 # in k-ohm\n", - "Rb2=70.0 # in k-ohm\n", - "Beta=50.0\n", - "Rc=2.0 # in k-ohm\n", - "\n", - "#Calculations\n", - "Ib=Vcc/((Rb1+Rb2+(Beta*Rc))*10**3)\n", - "Ic=Beta*Ib*10**3\n", - "Vce=Vcc-(Ic*Rc)\n", - "\n", - "#Result\n", - "print(\"Collector current,Ic(mA) = %.1f\"%Ic)\n", - "print(\"Collector to emitter voltage,Vce(V) = %.f\"%Vce)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector current,Ic(mA) = 2.5\n", - "Collector to emitter voltage,Vce(V) = 7\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.7, Page No. 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# operating point\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=9.0 # in V\n", - "Rb=50.0 # in k-ohm\n", - "Rc=250.0 # in ohm\n", - "Re=500.0 # in ohm\n", - "Beta=80.0\n", - "\n", - "#Calculations\n", - "Ib=Vcc/(Rb*10**3+(Beta*Re))\n", - "Ic=Beta*Ib*10**3\n", - "Vce=Vcc-(Ic*10**-3*(Rc+Re));\n", - "\n", - "#Result\n", - "print(\"collector current,Ic(mA) = %.f\"%Ic)\n", - "print(\"Collector to emitter voltage,Vce(V) = %.f\"%Vce)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "collector current,Ic(mA) = 8\n", - "Collector to emitter voltage,Vce(V) = 3\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.8, Page No. 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# operating point\n", - "\n", - "import math\n", - "#Variable declaration\n", - "R2=4.0 # in k-ohm\n", - "R1=40.0 # in k-ohm\n", - "Vcc=22.0 # in V\n", - "Rc=10.0 # in k-ohm\n", - "Re=1.5 # in k-ohm\n", - "Vbe=0.5 # in V\n", - "\n", - "#Calculations\n", - "Voc=R2*10**3*Vcc/((R1+R2)*10**3)\n", - "Ic=(Voc-Vbe)/(Re*10**3)\n", - "Vce=Vcc-(Rc+Re)*Ic*10**3\n", - "\n", - "#Result\n", - "print(\"Collector to emitter voltage,Vce(V) = %.1f\"%Vce)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector to emitter voltage,Vce(V) = 10.5\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.9, Page No.124" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# maximum collector current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Bv=12.0 # battery voltage in V\n", - "Cl=6.0 # collector load in k-ohm\n", - "\n", - "#Calculations\n", - "CC=Bv/Cl\n", - "\n", - "#Result\n", - "print(\"Collector current,(mA) = %.f\"%CC)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Collector current,(mA) = 2\n" - ] - } - ], - "prompt_number": 23 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.10, Page No. 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# maximum collector current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Bv=12.0 # battery voltage in V\n", - "P=2.0 # power in Watt\n", - "\n", - "#Calculations\n", - "Ic=(P/Bv)*10**3\n", - "\n", - "#Result\n", - "print(\"The maximum collector current,Ic(mA) = %.1f\"%Ic)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The maximum collector current,Ic(mA) = 166.7\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.11, Page No. 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# gain\n", - "\n", - "import math\n", - "#Variable declaration\n", - "del_ic=1.0 # in mA\n", - "del_ib=10.0 # in micro-A\n", - "del_Vbe=0.02 # in V\n", - "del_ib=10*10**-6 # in A\n", - "Rc=2.0 # in k-ohm\n", - "Rl=10.0 # in k-ohm\n", - "\n", - "#Calculations\n", - "Beta=del_ic/(del_ib*10**3)\n", - "Ri=(del_Vbe/del_ib)*10**-3\n", - "Rac=Rc*Rl/(Rc+Rl);\n", - "Av=round(Beta*Rac/Ri);\n", - "Ap=Beta*Av;\n", - "\n", - "#Result\n", - "print(\"Current gain,Beta = %.f\"%Beta)\n", - "print(\"Input impedence,Ri(k-ohm) = %.f\"%Ri)\n", - "print(\"Effective load,Rac(k-ohm) = %.2f\"%(math.floor(Rac*100)/100))\n", - "print(\"Voltage gain,Av = %.f\"%Av)\n", - "print(\"power gain,Ap = %.f\"%Ap)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Current gain,Beta = 100\n", - "Input impedence,Ri(k-ohm) = 2\n", - "Effective load,Rac(k-ohm) = 1.66\n", - "Voltage gain,Av = 83\n", - "power gain,Ap = 8300\n" - ] - } - ], - "prompt_number": 70 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.12, Page No. 125" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# output voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Rc=10.0 # in k-ohm\n", - "Rl=10 # in k-ohm\n", - "Beta=100.0\n", - "Ri=2.5\n", - "Iv=2.0 # input voltage in mV\n", - "\n", - "#Calculations\n", - "Rac=Rc*Rl/(Rc+Rl)\n", - "Av=round(Beta*Rac/Ri)\n", - "Ov=Av*Iv*10**-3\n", - "\n", - "#Result\n", - "print(\"Output voltage,(V) = %.1f\"%Ov)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Output voltage,(V) = 0.4\n" - ] - } - ], - "prompt_number": 34 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.13, Page No.133" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# gain and resistance \n", - "\n", - "import math\n", - "#Variable declaration\n", - "I=1.0\n", - "hfe=46.0\n", - "hoe=80*10**-6\n", - "hre=5.4*10**-4\n", - "hie=800.0 # in ohm\n", - "RL=5*10**3 # in ohm\n", - "Rg=500 # in ohm\n", - "\n", - "#Result\n", - "Aie=hfe/(I+(hoe*RL))\n", - "Aie = math.floor(Aie*10)/10\n", - "Zie=hie-(hre*RL*Aie)\n", - "Ave=(Aie*RL)/Zie\n", - "Ave=math.floor(Ave*10)/10\n", - "Zoe=((hie+Rg)/(hoe*(hie+Rg)-(hfe*hre)))/10**3\n", - "Ape=Aie*Ave\n", - "\n", - "#Result\n", - "print(\"Current gain,Aie = %.1f\"%(Aie))\n", - "print(\"Input resistance,Zie(ohm) = %.1f\"%(Zie))\n", - "print(\"Voltage gain,Ave = %.1f\"%Ave)\n", - "print(\"Output resistance,Zoe(k-ohm) = %.1f\"%Zoe)\n", - "print(\"Power gain,Ape = %.1f\"%Ape)\n", - "#voltage gain and power gain are calculated wrong in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Current gain,Aie = 32.8\n", - "Input resistance,Zie(ohm) = 711.4\n", - "Voltage gain,Ave = 230.5\n", - "Output resistance,Zoe(k-ohm) = 16.4\n", - "Power gain,Ape = 7560.4\n" - ] - } - ], - "prompt_number": 79 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.14, Page No.141" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# gain and voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=100.0 # gain without feedback\n", - "Beta=1.0/25 # feed back ratio\n", - "vi=50.0 # mV\n", - "Af=(A/(1+(Beta*A))) # gain with feedback\n", - "ff=Beta*A # feedback factor\n", - "Vo=Af*vi*10**-3 # in V\n", - "fv=Beta*Vo # in V\n", - "vin=vi*(1+Beta*A) # mV\n", - "\n", - "#Result\n", - "print(\"gain with feedback is , = %.f\"%Af)\n", - "print(\"feedback factor is, = %.f\"%ff)\n", - "print(\"output voltage is ,(V) = %.f\"%Vo)\n", - "print(\"feedback voltage is ,(V) = %.2f\"%fv)\n", - "print(\"new increased input voltage is ,(mV) = %.f\"%vin)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "gain with feedback is , = 20\n", - "feedback factor is, = 4\n", - "output voltage is ,(V) = 1\n", - "feedback voltage is ,(V) = 0.04\n", - "new increased input voltage is ,(mV) = 250\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.15, Page No. 142" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# voltage gain\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=1000.0 # gain without feedback\n", - "fctr=0.40 # gain reduction factor\n", - "\n", - "A2=800.0 # redued gain\n", - "\n", - "#Calculations\n", - "Af=A-fctr*A # gain with feedback\n", - "Beta=((A/Af)-1)/A # feed back ratio\n", - "Af2=((A2)/(1+(Beta*A2)))\n", - "prfb= ((A-A2)/A)*100 #percentage reduction without feedback\n", - "prwfb= ((Af-Af2)/Af)*100 #percentage reduction without feedback\n", - "\n", - "#Result\n", - "print(\"(i) voltage gain is , = %.1f\"%Af2)\n", - "print(\"(ii) percentage reduction without feedback is,(%%) = %.f\"%prfb)\n", - "print(\" percentage reduction with feedback is,(%%) = %.2f\"%(math.ceil(prwfb*100)/100))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) voltage gain is , = 521.7\n", - "(ii) percentage reduction without feedback is,(%) = 20\n", - " percentage reduction with feedback is,(%) = 13.05\n" - ] - } - ], - "prompt_number": 81 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.16, Page No. 142" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# small change in gain\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=200.0 #gain without feedback\n", - "Beta=0.25 #feed back ratio\n", - "gc=10 #percent gain change\n", - "\n", - "#Calculations\n", - "dA=gc/100.0\n", - "dAf= ((1/(1+Beta*A)))*dA\n", - "#Result\n", - "print(\"small change in gain is, = %.4f\"%(math.floor(dAf*10**4)/10**4))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "small change in gain is, = 0.0019\n" - ] - } - ], - "prompt_number": 58 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.17, Page No.143" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# input voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=200.0 # gain without feedback\n", - "Beta=0.05 # feed back ratio\n", - "Dn=10.0 # percentage distortion\n", - "vo=0.5 # initial output voltage\n", - "\n", - "#Calculations\n", - "Af=(A/(1+(Beta*A))) # gain with feedback\n", - "Dn1=(Dn/(1+A*Beta)) # percentage Distortion with negative feedback\n", - "ff=Beta*A # feedback factor\n", - "vi=A*vo # in V\n", - "vin=vi/Af # in V\n", - "\n", - "#Result\n", - "print(\"gain with negative feedback is , = %.1f\"%Af)\n", - "print(\"percentage Distortion with negative feedback is ,(%%) = %.3f\"%Dn1)\n", - "print(\"new input voltage is ,(V) = %.1f\"%vin)\n", - "#gain and input voltage are calculated wrong in the textbook " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "gain with negative feedback is , = 18.2\n", - "percentage Distortion with negative feedback is ,(%) = 0.909\n", - "new input voltage is ,(V) = 5.5\n" - ] - } - ], - "prompt_number": 83 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.18, Page No. 143" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# percentage of feedback\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=50.0 # gain without feedback\n", - "Af=10.0 # gain with feedback\n", - "\n", - "#Calculations\n", - "Beta=(((A/Af)-1)/A)*100 # feed back ratio\n", - "print(\"percentage of feedback is ,(%%) = %.f\"%Beta)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "percentage of feedback is ,(%) = 8\n" - ] - } - ], - "prompt_number": 84 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.19, Page No. 144" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# band width\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Bw=200.0 # bandwidth in kHz\n", - "vg=40.0 # dB\n", - "fb=5.0 # percentage negetive feedback\n", - "A=40.0 # gain without feedback\n", - "\n", - "#Calculations\n", - "Beta=fb/100 # feed back ratio\n", - "Af=(A/(1+(Beta*A))) # gain with feedback\n", - "Bwf= (A*Bw)/Af # Bandwidth with feedback\n", - "\n", - "#Result\n", - "print(\" new band-width is ,(kHz) = %.f\"%Bwf)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " new band-width is ,(kHz) = 600\n" - ] - } - ], - "prompt_number": 52 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.20, Page No. 144" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# percentage reduction\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A=50.0 # gain without feedback\n", - "Af=25.0 # gain with feedback\n", - "Ad=40.0 # new gain after ageing\n", - "\n", - "#Calculations\n", - "Beta=(((A/Af)-1)/A) # feed back ratio\n", - "Af1=(Ad/(1+(Beta*Ad)))# new gain with feedback\n", - "df=Af-Af1 # reduction in gain\n", - "pdf= (df/Af)*100 # percentage reduction in gain\n", - "\n", - "#Result\n", - "print(\" percentage reduction in gain is ,(%%) = %.1f\"%pdf)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " percentage reduction in gain is ,(%) = 11.1\n" - ] - } - ], - "prompt_number": 55 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.21, Page No. 145" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Av and beta\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Af=100.0 # gain with feeback\n", - "vi=50.0 # in mV\n", - "vi1=60.0 # in mV\n", - "\n", - "#Calcualtion\n", - "AAf=vi1/vi\n", - "A=AAf*Af\n", - "Beta=(((A/Af)-1)/A)\n", - "\n", - "#Result\n", - "print(\"Av is ,= %.f\"%A)\n", - "print(\"feedback factor is, = %.5f or 1/600\"%Beta)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Av is ,= 120\n", - "feedback factor is, = 0.00167 or 1/600\n" - ] - } - ], - "prompt_number": 57 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch5.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch5.ipynb deleted file mode 100755 index 6b01a9c6..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch5.ipynb +++ /dev/null @@ -1,331 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 5 : Power Amplifiers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.1, Page No. 167" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# efficiency\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Pac=0.1 #in W\n", - "Vcc=20.0 #in V\n", - "Ic=20.0 #in mA\n", - "\n", - "#Calculations\n", - "Pdc=Vcc*Ic*10**-3 #in W\n", - "eta=(Pac/Pdc)*100 #efficiency\n", - "\n", - "#Result\n", - "print(\"efficiency is ,(%%)= %.f\"%eta)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "efficiency is ,(%)= 25\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.2, Page No. 167" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Pac=2.0 #in W\n", - "Vcc=12.0 #in V\n", - "\n", - "#Calculations\n", - "Ic=(Pac*math.sqrt(2)*math.sqrt(2))/Vcc\n", - "\n", - "#Result\n", - "print(\"maximum collector current is ,(A)= %.2f\" %Ic)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum collector current is ,(A)= 0.33\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.3, Page No. 167" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# collector efficiency and power rating\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Pac=3.0 #in W\n", - "Pdc=10.0 #in W\n", - "\n", - "#Calculations\n", - "eta=(Pac/Pdc)*100 #percentage efficieny \n", - "\n", - "#Result\n", - "print(\"collector efficiency is , (%%) = %.f\"%eta)\n", - "print(\"power rating of transistor is ,(W) = %.f\" %Pdc)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "collector efficiency is , (%) = 30\n", - "power rating of transistor is ,(W) = 10\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.4, Page No. 168" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# power\n", - "\n", - "import math\n", - "#Variable declaration\n", - "dIc=100.0 #in mA\n", - "Rl=6.0 #in ohm\n", - "Rl=6.0 #in ohm\n", - "dVc=10.0 #in V\n", - "\n", - "#Calculations\n", - "mv=dIc*Rl*10**-3 #in V\n", - "pd=mv*dIc #in mW\n", - "oi=(dVc/dIc)*10**3 #in ohm\n", - "n=math.sqrt(oi/Rl) #turn ratio of transformer\n", - "tsv=dVc/n #om V\n", - "Il=tsv/Rl #in A\n", - "ptr= Il**2*Rl*10**3 #in mW\n", - "\n", - "#Result\n", - "print(\"(i) power developed in loudspeaker is , (mW)= %.f\"%pd)\n", - "print(\"(ii) power transferred to loudspeaker is ,(mw)= %.f\"%ptr)\n", - "#in textbook in second case there is one point deviation in the answer." - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) power developed in loudspeaker is , (mW)= 60\n", - "(ii) power transferred to loudspeaker is ,(mw)= 1000\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.5, Page No. 168" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# power\n", - "\n", - "import math\n", - "#Variable declaration\n", - "n=10.0 #turn ratio\n", - "Rl=10.0 #ohm\n", - "Ic=100.0 #in mA\n", - "\n", - "#Result\n", - "Rld=n**2*Rl #in ohm\n", - "Irms=Ic/(math.sqrt(2)) #in mA\n", - "P=Irms**2*Rld #in W\n", - "\n", - "#Result\n", - "print(\"maximum power output is ,(W)= %.f\"%(P*10**-6))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum power output is ,(W)= 5\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.6, Page No. 169" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# harmonic distortions and change in power\n", - "\n", - "import math\n", - "#Variable declaration\n", - "#ie=15*sin 400*t+1.5*sin 800*t + 1.2*sin 1200*t + 0.5*sin 1600*t given equation\n", - "I2=1.5 #in A\n", - "I1=15.0 #in A\n", - "I3=1.2 #in A\n", - "I4=0.5 #in A\n", - "D2=(I2/I1)*100 #Second percentage harmonic distortion\n", - "D3=(I3/I1)*100 #Third percentage harmonic distortion\n", - "#in book I2 is mentioned wrongly in place of I1\n", - "D4=(I4/I1)*100 #Fourth percentage harmonic distortion\n", - "D=math.sqrt(D2**2+D3**2+D4**2)/100 #Distortion Factor\n", - "P1=1.0 #assume\n", - "P=(1+D**2)*P1 #in W\n", - "peri=((P-P1)/P1)*100 #percentage increase in power due to distortion\n", - "\n", - "#Result\n", - "print(\"part (i)\")\n", - "print(\"Second percentage harmonic distortion (D2) is ,(%%) = %.f\"%D2)\n", - "print(\"Third percentage harmonic distortion (D3) is ,(%%) = %.f\"%D3)\n", - "print(\"Fourth percentage harmonic distortion (D4) is ,(%%) = %.2f\"%D4)\n", - "print(\"\\npart (ii)\")\n", - "print(\"percentage increase in power due to distortion is ,(%%) = %.2f\"%peri)\n", - "# answer for % increase is slightly different than book" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "part (i)\n", - "Second percentage harmonic distortion (D2) is ,(%) = 10\n", - "Third percentage harmonic distortion (D3) is ,(%) = 8\n", - "Fourth percentage harmonic distortion (D4) is ,(%) = 3.33\n", - "\n", - "part (ii)\n", - "percentage increase in power due to distortion is ,(%) = 1.75\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 5.7, Page No. 169" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# power dissipated\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc=15.0 #in V\n", - "Vpeak=24.0/2 #in V\n", - "Rl=100.0 #in ohm\n", - "\n", - "#Calculations\n", - "Ipeak= Vpeak/Rl #in A\n", - "Pdc=Vcc*(2/(math.pi))*Ipeak #in W\n", - "pad=(1.0/2)*(Vpeak**2)/Rl #in W\n", - "pd=Pdc-pad #in W\n", - "pde=pd/2 #in W\n", - "\n", - "#Result\n", - "print(\"power dissipated by each transistor is,(mW)= %.f\"%(pde*10**3))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "power dissipated by each transistor is,(mW)= 213\n" - ] - } - ], - "prompt_number": 28 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch6.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch6.ipynb deleted file mode 100755 index ebc711df..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch6.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 6 : Field Effect Transistors" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.1, Page No. 184" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# drain resistance transconductance and amplification factor\n", - "\n", - "import math\n", - "from array import array\n", - "#Variable declaration\n", - "Vgs=array('d', [0.0, 0.0, 0.3]) #in V\n", - "Vds=array('d',[5.0, 10.0, 10.0]) #in V\n", - "Id=array('d',[8.0, 8.2, 7.6]) #in mA\n", - "\n", - "#Calcualtions\n", - "dVds=Vds[1]-Vds[0] #in V\n", - "dId=Id[1]-Id[0] #in mA\n", - "rd=(dVds/dId) #in kilo-ohm\n", - "dVgs=Vgs[2]-Vgs[1] #in V\n", - "dId1=Id[1]-Id[2] #in mA\n", - "gm=dId1/dVgs #in mA/volt\n", - "mu=gm*rd #A/V\n", - "\n", - "#Result\n", - "print(\"(i) A.C. Drain resistance is ,(kilo-ohm)= %.f\"%rd)\n", - "print(\"(ii) Transconductance is ,(mS) = %.f\"%gm)\n", - "print(\"(iii) Amplification factor is , = %.f\"%mu)\n", - "#Transconductance and Amplification factor are calculated wrong in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) A.C. Drain resistance is ,(kilo-ohm)= 25\n", - "(ii) Transconductance is ,(mS) = 2\n", - "(iii) Amplification factor is , = 50\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.2, Page No. 184" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# mutual conductance\n", - "\n", - "import math\n", - "#Variable declaration\n", - "I1=1.0 # in mA\n", - "I2=1.2 # in mA\n", - "V1=-3.0 # in V\n", - "V2=-2.9 # in V\n", - "\n", - "#Calculations\n", - "del_ID=(I2-I1)\n", - "del_VGS=V2-V1 # in V\n", - "gm=del_ID/del_VGS\n", - "\n", - "#Result\n", - "print(\"mutual conductance,gm(mS) = %.f\"%gm)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "mutual conductance,gm(mS) = 2\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.3, Page No. 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# pinch off voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "a=5.6*10**-6/2 # channel width in m\n", - "epsilon0=8.86*10**-12 # in F/m\n", - "epsilon=12*epsilon0 # in F/m\n", - "Nd=10**21 # in m^-3\n", - "e=1.6*10**-19 # in V\n", - "\n", - "#Calculations\n", - "Vp=e*Nd*a**2/(2*epsilon);\n", - "\n", - "#Result\n", - "print(\"Pinch off voltage,Vp(V) = %.1f\"%Vp)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Pinch off voltage,Vp(V) = 5.9\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.4, Page No. 185" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# ID gm and gmo\n", - "\n", - "import math\n", - "#Variable declaration\n", - "I_DES=8.7 # in mA\n", - "V1=-3.0 # in V\n", - "V_GS=-1.0 # in V\n", - "\n", - "\n", - "#Calculations\n", - "gmo=-(2*I_DES/V1)\n", - "ID=I_DES*(1-(V_GS/V1))**2\n", - "gm=gmo*(1-(V_GS/V1));\n", - "\n", - "#Result\n", - "print(\"(i). ID(mA) = %.3f\"%(math.floor(ID*1000)/1000))\n", - "print(\"(ii). gmo(mS) = %.1f\"%gmo)\n", - "print(\"(iii).gm(mA) = %.3f\"%(math.floor(gm*1000)/1000))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i). ID(mA) = 3.866\n", - "(ii). gmo(mS) = 5.8\n", - "(iii).gm(mA) = 3.866\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.5, Page No. 186" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Vgs\n", - "\n", - "import math\n", - "#Variable declaration\n", - "ID=3.0 # in mA\n", - "I_DSS=9.0 # in mA\n", - "Vp=-4.5 # in V\n", - "\n", - "#Calculations\n", - "Vgs=-Vp*(math.sqrt(ID/I_DSS)-1)\n", - "\n", - "\n", - "#Result\n", - "print(\"Vgs(V) = %.1f\"%Vgs)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Vgs(V) = -1.9\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.6, Page No. 196" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# voltage amplification\n", - "\n", - "import math\n", - "#Variable declaration\n", - "gm=3 #Transconductance in mS\n", - "rl=10 #load resistance in kilo-ohm\n", - "\n", - "#Calculations\n", - "av=gm*rl\n", - "#Result\n", - "print(\"the voltage aplification is ,= %.f\"%av)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the voltage aplification is ,= 30\n" - ] - } - ], - "prompt_number": 27 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 6.7, Page No. 196" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# output voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Rl=20.0 #in kilo-ohm\n", - "Rs=1.0 #in kilo-ohm\n", - "Rg=1.0 #in M-ohm\n", - "Cs=25.0 #in micro-F\n", - "mu=20.0 #amplification factor\n", - "rd=100.0 #in kilo-ohm\n", - "vi=2.0 #in V\n", - "f=1.0 #in kilo-Hz\n", - "\n", - "#Calculations\n", - "Xc=((1/(2*math.pi*f*10**3*Cs*10**-6)))\n", - "A=((mu*Rl*10**3)/((rd+Rl)*10**3))\n", - "Vo=A*vi\n", - "\n", - "#Result\n", - "print(\"amplifier output signal voltage is ,(V)= %.2f\"%(math.floor(Vo*100)/100))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "amplifier output signal voltage is ,(V)= 6.66\n" - ] - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file diff --git a/Solid_State_Electronics/Solid_State_electronics_Ch9.ipynb b/Solid_State_Electronics/Solid_State_electronics_Ch9.ipynb deleted file mode 100755 index 1a3e4d3e..00000000 --- a/Solid_State_Electronics/Solid_State_electronics_Ch9.ipynb +++ /dev/null @@ -1,154 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 9 : Silicon Controlled Rectifier" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.1, Page No. 238 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# average voltage\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vm=200.0 #in V\n", - "theta=30.0 #firing angle in degree\n", - "\n", - "#Calculations\n", - "vdc=((Vm/math.pi)*(1+math.cos(theta*math.pi/180)))\n", - "\n", - "#Result\n", - "print(\"average value of voltage is ,(V)= %.f\"%(round(vdc)))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "average value of voltage is ,(V)= 119\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.2, Page No. 238" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# dc load current rms load current amd power dissipiated\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Va=300.0 # in V\n", - "Vm=300.0*math.sqrt(2) # in V\n", - "Rl=50.0 #in ohm\n", - "theta1=90.0 #firing angle in degree\n", - "\n", - "#Calculations\n", - "idc=((Vm/(2*math.pi*Rl))*(1+math.cos(theta1*math.pi/180)))\n", - "irms=Va/(2*Rl)\n", - "P=irms**2*Rl\n", - "\n", - "#Result\n", - "print(\"(i) The dc load current is ,(A) = %.2f\"%idc)\n", - "print(\"(ii) The rms load current is ,(A) = %.f\"%(round(irms)))\n", - "print(\"(iii) The power dissipated by the load is ,(W)= %.f\"%(round(P)))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) The dc load current is ,(A) = 1.35\n", - "(ii) The rms load current is ,(A) = 3\n", - "(iii) The power dissipated by the load is ,(W)= 450\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 9.3, Page No. 239" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# firing angle conducting angle and average current\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ih=0.0 #in A\n", - "Vi=100.0 #in V\n", - "Vm=200.0 #in V\n", - "Rl=100.0 #in ohm\n", - "\n", - "#Calculations\n", - "theta1=(180/math.pi)*math.asin(Vi/Vm) #firing angle in degree\n", - "ca=180-theta1 #conducting angle in dehree\n", - "av=((Vm/(2*math.pi))*(1+math.cos(theta1*math.pi/180)))\n", - "ac=av/Rl \n", - "\n", - "#Result \n", - "print(\"(i) firing angle is ,(degree) = %.f\u00b0\"%(theta1))\n", - "print(\"(ii) conducting angle is ,(degree) = %.f\u00b0\"%ca)\n", - "print(\"(iii) average current is ,(A) = %.4f\"%ac)\n", - "#average current is wrong in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(i) firing angle is ,(degree) = 30\u00b0\n", - "(ii) conducting angle is ,(degree) = 150\u00b0\n", - "(iii) average current is ,(A) = 0.5940\n" - ] - } - ], - "prompt_number": 10 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit