From db0855dbeb41ecb8a51dde8587d43e5d7e83620f Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb | 710 +++++++++++++++++++++++++ 1 file changed, 710 insertions(+) create mode 100644 Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb (limited to 'Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb') diff --git a/Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb b/Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb new file mode 100644 index 00000000..3d83df64 --- /dev/null +++ b/Quantum_mechanics_by_M.C.Jain/chapter2_1.ipynb @@ -0,0 +1,710 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:46bc70330d4213802afb03e252b2ad32eb9319ed4cc2a32fe2c16df97a5f1978" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2 Particle nature of Radiation; The origin of Quantum theory" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=40 #W\n", + "lembda=6000*10**-10 #m\n", + "h=6.63*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "n=(E*lembda)/(h*c)\n", + "\n", + "#Result\n", + "print\"No. of photons emitted per second are given by \",round(n*10**-19,2),\"*10**19\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "No. of photons emitted per second are given by 12.07 *10**19\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "a=3.2 #ev\n", + "energy=3.8 #ev\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "c=energy-a\n", + "Energy=c*e\n", + "\n", + "#Result\n", + "print\"Kinetic energy of the photoelectron is given by \",Energy,\"Joule\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Kinetic energy of the photoelectron is given by 9.6e-20 Joule\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=3.45 #ev\n", + "h=6.63*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "lembda=(h*c)/(W*e)\n", + "\n", + "#Result\n", + "print\"Maximum wavelength of photon is \",round(lembda*10**10,0),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum wavelength of photon is 3603.0 A\n" + ] + } + ], + "prompt_number": 193 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.5 Page no-12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=3 #ev\n", + "h=6.63*10**-34\n", + "e=1.6*10**-19\n", + "lembda=3.0*10**-7 #m\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "v0=(W*e)/h\n", + "v=c/lembda\n", + "E=h*(v-v0)\n", + "E1=(h*(v-v0))/(1.6*10**-19)\n", + "V0=E/e\n", + "\n", + "#Result\n", + "print\"(a) Threshold frequency \",round(v0*10**-15,2),\"*10**15 HZ\"\n", + "print\"(b) Maximum energy of photoelectron \",round(E1,2),\"eV\"\n", + "print\"(c) Stopping potential \",round(V0,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Threshold frequency 0.72 *10**15 HZ\n", + "(b) Maximum energy of photoelectron 1.14 eV\n", + "(c) Stopping potential 1.14 V\n" + ] + } + ], + "prompt_number": 197 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6 Page no-13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "v0=6*10**14 #s**-1\n", + "h=6.63*10**-34\n", + "e=1.6*10**-19\n", + "V0=3\n", + "\n", + "#Calculaton\n", + "W=h*v0\n", + "W0=(h*v0)/e\n", + "V=(e*V0+h*v0)/h\n", + "\n", + "#Result \n", + "print\"work function is given by \",round(W0,3),\"ev\"\n", + "print\"frequency is given by \",round(V*10**-15,2),\"*10**15 s-1\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "work function is given by 2.486 ev\n", + "frequency is given by 1.32 *10**15 s-1\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7 Page no 13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=6800.0*10**-10 #m\n", + "h=6.6*10**-34\n", + "W=2.3 #ev\n", + "c=3*10**8 #m/s\n", + "\n", + "#Calculation\n", + "E=((h*c)/lembda)/1.6*10**-19\n", + "\n", + "#Result\n", + "print\"Energy is \",round(E*10**38,2),\"ev\"\n", + "print\"since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy is 1.82 ev\n", + "since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light.\n" + ] + } + ], + "prompt_number": 200 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.8 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=3500*10**-10 #m\n", + "h=6.6*10**-34\n", + "c=3*10**8 #m/s\n", + "\n", + "#calculation \n", + "E=((h*c)/lembda)/1.6*10**-19\n", + "\n", + "#Result\n", + "print\"Energy is \" ,round(E*10**38,2),\"ev\"\n", + "print\"1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy is 3.54 ev\n", + "1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons\n" + ] + } + ], + "prompt_number": 201 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.9 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "lembda=6.2*10**-6\n", + "W=0.1 #ev\n", + "h=6.6*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "e=1.6*10**-19\n", + "\n", + "#Calculation\n", + "E=((h*c)/(lembda*e))-W\n", + "\n", + "#Result\n", + "print\"Maximum kinetic energy of photoelectron \",round(E,1),\"ev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum kinetic energy of photoelectron 0.1 ev\n" + ] + } + ], + "prompt_number": 112 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.10 Page no 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "e=1.60*10**-19 #C\n", + "slope=4.12*10**-15 #Vs\n", + "\n", + "#Calculation\n", + "h=slope*e\n", + "\n", + "#Result\n", + "print\"Value of plank's constant \",h,\"Js\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of plank's constant 6.592e-34 Js\n" + ] + } + ], + "prompt_number": 114 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.11 Page no 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "W=2.26*1.6*10**-19 #ev\n", + "v=10**6 #m/s\n", + "m=9*10**-31\n", + "\n", + "#Calculation\n", + "V=((1/2.0)*m*v**2+W)/h\n", + "\n", + "#Result\n", + "print\"frequency of incident radiation \",round(V*10**-15,2),\"*10**15 HZ\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "frequency of incident radiation 1.23 *10**15 HZ\n" + ] + } + ], + "prompt_number": 118 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.12 Page no 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "V1=.82 #volts\n", + "V2=1.85 #volts\n", + "lembda1=4.0*10**-7 #m\n", + "lembda2=3.0*10**-7\n", + "e=1.6*10**-19\n", + "c=3.0*10**8 #m/s\n", + "\n", + "#Calculation\n", + "lembda=(1/lembda2)-(1/lembda1)\n", + "h=(e*(V2-V1))/(c*lembda)\n", + "\n", + "#Result\n", + "print\"(a) plank's constant \",h,\"Js\"\n", + "print\"(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) plank's constant 6.592e-34 Js\n", + "(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity.\n" + ] + } + ], + "prompt_number": 202 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.13 Page no 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "h=6.62*10**-34 #Js\n", + "c=3*10**8 #m/s\n", + "lembda=4560.0*10**-10 #m\n", + "p=1*10**-3 #W\n", + "a=0.5/100\n", + "e=1.6*10**-19\n", + "\n", + "#calculation\n", + "E=(h*c)/lembda\n", + "N=p/E #Number of photons incedent on the surface\n", + "n=N*a\n", + "I=n*e\n", + "\n", + "#result\n", + "print\"Photoelectric current \",round(I*10**6,2),\"*10**-6 A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Photoelectric current 1.84 *10**-6 A\n" + ] + } + ], + "prompt_number": 131 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.14 Page no 22" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "m0=9.1*10**-31 #Kg\n", + "c=3*10**8 #m/s\n", + "h=6.6*10**-34 #Js\n", + "v1=2.0*10**-10 #m\n", + "\n", + "#Calculation\n", + "import math\n", + "v= (h/(m0*c))*(1-(math.cos(90))*3.14/180.0)\n", + "v2=v+v1\n", + "v0=v2-v1\n", + "E=(h*c*(v0))/(v1*v2)\n", + "b=(1/(math.sin(90)*3.14/180.0))*((v2*10**-10/v1)-math.cos(90)*3.14/180.0)\n", + "angle=3.14/2.0-math.atan(b)\n", + "\n", + "#Result\n", + "print \"(a) the wavelength of scattered photon is \",round(v2*10**10,3),\"A\"\n", + "print\"(b) The energy of recoil electron is \",round(E*10**17,2),\"*10**-17 J\"\n", + "print\"(c) angle at which the recoil electron appears \",round(angle,2),\"degree\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) the wavelength of scattered photon is 2.024 A\n", + "(b) The energy of recoil electron is 1.19 *10**-17 J\n", + "(c) angle at which the recoil electron appears 1.11 degree\n" + ] + } + ], + "prompt_number": 278 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.15 Page no 23" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given \n", + "E=0.9 #Mev\n", + "a=120 #degree\n", + "m=9.1*10**-31 #Kg\n", + "c=3*10**8 #m/s\n", + "\n", + "#calculation\n", + "b=((m*c**2)/1.6*10**-19)*10**32\n", + "energy=E/(1+2*(E/b)*(3/4.0))\n", + "\n", + "#Result\n", + "print \"energy of scattered photon \",round(energy,3),\"Mev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of scattered photon 0.247 Mev\n" + ] + } + ], + "prompt_number": 142 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.16 Page no 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "v1=2.000*10**-10 #m\n", + "v2=2.048*10**-10 #m\n", + "a=180 #degree\n", + "a1=60 #degree\n", + "h=6.6*10**-34\n", + "c=3*10**8\n", + "\n", + "#Calculation\n", + "import math\n", + "b=(v2-v1)/(1-math.cos(a*3.14/180.0))\n", + "V=v1+b*(1-math.cos(60*3.14/180.0))\n", + "E=(h*c*(V-v1))/(V*v1)\n", + "\n", + "#Result\n", + "print\"(a) wavelength of radiation scattered at an angle of 60 degree \",round(V*10**10,3),\"A\"\n", + "print \"(b) Energy of the recoiul electron is \",round(E*10**18,2),\"*10**-18 J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) wavelength of radiation scattered at an angle of 60 degree 2.012 A\n", + "(b) Energy of the recoiul electron is 5.9 *10**-18 J\n" + ] + } + ], + "prompt_number": 277 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.17 Page no 24" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=4*10**3*1.6*10**-19\n", + "m0=9.1*10**-31\n", + "b=6.4*10**-16\n", + "d=102.39*10**-16\n", + "h=6.3*10**-34\n", + "c=3*10**8\n", + "\n", + "#Calculation\n", + "import math\n", + "p=math.sqrt(2*m0*E)\n", + "d=b+d\n", + "lembda=(2*h*c)/d\n", + "\n", + "#Result\n", + "print\"Wavelength of incident photon is \", round(lembda*10**10,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Wavelength of incident photon is 0.35 A\n" + ] + } + ], + "prompt_number": 233 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.19 Page no 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Given\n", + "E=1.02 #Mev\n", + "b=0.51\n", + "\n", + "#Calculation\n", + "import math\n", + "alpha=E/b\n", + "a=1/(math.sqrt(2*(alpha+2)))\n", + "angle=2*(math.asin(a)*180/3.14)\n", + "e=E/(1.0+alpha*(1-(math.cos(angle*3.14/180.0))))\n", + "\n", + "#Result\n", + "print\"(a) Angle for symmetric scattering is \", round(angle,1),\"degree\"\n", + "print \"(b) energy of the scattered photon is \",round(e,2),\"Mev\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Angle for symmetric scattering is 41.4 degree\n", + "(b) energy of the scattered photon is 0.68 Mev\n" + ] + } + ], + "prompt_number": 263 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit