From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb | 433 --------------------- 1 file changed, 433 deletions(-) delete mode 100755 Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb') diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb deleted file mode 100755 index 2c6e6eeb..00000000 --- a/Principles_of_Physics_by_F.J.Bueche/Chapter7.ipynb +++ /dev/null @@ -1,433 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:83169fd272ce864306940c4a49b0d63f096c19015d841f59df75135834323538" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter07: Motion in a Circle" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.1:pg-208" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_1\n", - " \n", - " \n", - " #To convert angles to radians and revolutions\n", - "theta=70.0 #units in degrees\n", - "deg=360.0 #units in degrees\n", - "rad=theta*2*math.pi/deg #units in radians\n", - "rev=1 #units in revolution\n", - "rev=theta*rev/deg #units in revolution\n", - "print \" 70 degrees in radians is \",round(rad,2),\"radians \\n 70 degrees in revolutions it is \",round(rev,3),\" revolutions\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - " 70 degrees in radians is 1.22 radians \n", - " 70 degrees in revolutions it is 0.194 revolutions\n" - ] - } - ], - "prompt_number": 16 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.2:pg-209" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_2\n", - " \n", - " \n", - "#To find average angular velocity\n", - "theta=1800.0 #units in rev\n", - "t=60.0 #units in sec\n", - "w=(theta/t) #units in rev/sec\n", - "w=w*(2*math.pi) #units in rad/sec\n", - "print \"Average angular velocity is w=\",round(w),\" rad/sec\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Average angular velocity is w= 188.0 rad/sec\n" - ] - } - ], - "prompt_number": 17 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.3:pg-210" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_3\n", - " \n", - " \n", - " #To find average angular acceleration\n", - "wf=240.0 #units in rev/sec\n", - "w0=0 #units in rev/sec\n", - "t=2.0 #units in minutes\n", - "t=t*60 #units in sec\n", - "alpha=(wf-w0)/t #units in rev/sec**2\n", - "print \"Average angular acceleration is alpha=\",round(alpha),\" rev/sec**2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Average angular acceleration is alpha= 2.0 rev/sec**2\n" - ] - } - ], - "prompt_number": 18 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.4:pg-212" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_4\n", - " \n", - " \n", - "#To find out how many revolutions does it turn before rest\n", - "wf=0 #units in rev/sec\n", - "w0=3 #units in rev/sec\n", - "t=18 #units in sec\n", - "alpha=(wf-w0)/t #units in rev/sec**2\n", - "theta=(w0*t)+0.5*(alpha*t**2) #units in rev\n", - "print \"Number of revolutions does it turn before rest is theta=\",round(theta),\" rev\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of revolutions does it turn before rest is theta= -108.0 rev\n" - ] - } - ], - "prompt_number": 19 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.5:pg-212" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_5\n", - " \n", - " \n", - " #To find the angular acceleration and angular velocity of one wheel\n", - "vtf=20.0 #units in meters/sec\n", - "r=0.4 #units in meters\n", - "wf=vtf/r #units in rad/sec\n", - "vf=20.0 #units in meters/sec\n", - "v0=0 #units in meters/sec**2\n", - "t=9.0 #units in sec\n", - "a=(vf-v0)/t #units in meters/sec**2\n", - "alpha=a/r #units in rad/sec**2\n", - "print \"Angular accelertion is a=\",round(a,2),\" meters/sec**2\\n\"\n", - "print \"Angular velocity is alpha=\",round(alpha,2),\" rad/sec**2\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Angular accelertion is a= 2.22 meters/sec**2\n", - "\n", - "Angular velocity is alpha= 5.56 rad/sec**2\n" - ] - } - ], - "prompt_number": 20 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.6:pg-213" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_6\n", - " \n", - " \n", - " #To find out the rotation rate\n", - "at=8.6 #units in meters/sec**2\n", - "r=0.2 #units in meters\n", - "alpha=at/r #units in rad/sec**2\n", - "t=3 #units in sec\n", - "wf=alpha*t #units in rad/sec\n", - "print \"The rotation rate is wf=\",round(wf),\" rad/sec\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The rotation rate is wf= 129.0 rad/sec\n" - ] - } - ], - "prompt_number": 22 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.7:pg-215" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_7\n", - " \n", - " \n", - " #To calculate how large a horizontal force must the pavement exert\n", - "m=1200.0 #units in Kg\n", - "v=8.0 #units in meters/sec\n", - "r=9 #units in meters\n", - "F=(m*v**2)/r #units in Newtons\n", - "print \"The horizontal force must the pavement exerts is F=\",round(F),\" Newtons\"\n", - " #In text book the answer is printed wrong as F=8530 N but the correct answer is 8533 N\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The horizontal force must the pavement exerts is F= 8533.0 Newtons\n" - ] - } - ], - "prompt_number": 25 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.9:pg-220" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_9\n", - " \n", - " \n", - " #To find out the angle where it should be banked\n", - "v=25 #units in meters/sec\n", - "r=60 #units in meters\n", - "g=9.8 #units in meters/sec**2\n", - "tantheta=v**2/(r*g) #units in radians\n", - "theta=math.atan(tantheta)*180/math.pi\n", - "print \"The angle where it should be banked is theta=\",round(theta),\" degrees\",\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The angle where it should be banked is theta= 47.0 degrees\n" - ] - } - ], - "prompt_number": 26 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.10:pg-220" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_10\n", - " \n", - " \n", - " #To find out the ratio of F/W\n", - "G=6.67*10**-11 #units in Newton meter**2/Kg**2\n", - "m1=0.0080 #units in Kgs\n", - "m2=0.0080 #units in Kgs\n", - "r=2 #units in Meters\n", - "F=(G*m1*m2)/r**2 #units in Newtons\n", - "m=m1 #units in Kgs\n", - "g=9.8 #units in meter/sec**2\n", - "W=m*g #units in Newtons\n", - "F_W=F/W\n", - "print \"The F/W Ratio is=\",round(F_W,16)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The F/W Ratio is= 1.36e-14\n" - ] - } - ], - "prompt_number": 28 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.11:pg-221" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_11\n", - " \n", - " \n", - " #To find the mass of the sun\n", - "t=3.15*10**7 #units in sec\n", - "r=1.5*10**11 #units in meters\n", - "v=(2*math.pi*r)/t #units in meters/sec\n", - "G=6.67*10**-11 #units in Newtons\n", - "ms=(v**2*r)/G #Units in Kg\n", - "print \"The mass of the sun is Ms=\",round(ms,-28),\"Kg\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The mass of the sun is Ms= 2.01e+30 Kg\n" - ] - } - ], - "prompt_number": 32 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex7.12:pg-222" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " #Example 7_12\n", - " \n", - " \n", - " #To findout the orbital radius and its speed\n", - "G=6.67*10**-11 #units in Newtons\n", - "me=5.98*10**24 #units in Kg\n", - "t=86400.0 #units in sec\n", - "r=((G*me*t**2)/(4*math.pi**2))**(1/3.0)\n", - "print \"The orbital radius is r= \",round(r),\" meters\\n\"\n", - "v=(2*math.pi*r)/t #units in meters/sec\n", - "print \"The orbital speed is v=\",round(v),\" meters/sec\"\n", - " #in textbook the answer is printed wrong as v=3070 m/sec but the correct answer is v=3073 m/sec\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The orbital radius is r= 42250474.0 meters\n", - "\n", - "The orbital speed is v= 3073.0 meters/sec\n" - ] - } - ], - "prompt_number": 34 - } - ], - "metadata": {} - } - ] -} -- cgit