From 5e4af9aebb389109363666017f67e986e96a9906 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Fri, 9 Sep 2016 23:30:25 +0600 Subject: Added(A)/Deleted(D) following books A Heat_Transfer_Principles_And_Applications_by_Dutta/README.txt A Heat_Transfer_Principles_And_Applications_by_Dutta/ch10.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch11.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch3.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch4.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch5.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch7.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch8.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/ch9.ipynb A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/10.png A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/5.png A Heat_Transfer_Principles_And_Applications_by_Dutta/screenshots/51.png A Heat_Transfer_in_SI_units_by_Holman/Chapter1.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter10.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter11.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter2.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter3.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter4.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter5.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter6.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter7.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter8.ipynb A Heat_Transfer_in_SI_units_by_Holman/Chapter9.ipynb A Heat_Transfer_in_SI_units_by_Holman/README.txt A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.1.png A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.2.png A Heat_Transfer_in_SI_units_by_Holman/screenshots/9.4.png A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter1.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter2.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter3.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter4.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter5.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter6.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter8.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/Chapter9.ipynb A Power_Electronics_Principles_and_Applications_by_Jacob/README.txt A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/4.png A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/5.png A Power_Electronics_Principles_and_Applications_by_Jacob/screenshots/6.png A sample_notebooks/AviralYadav/Chapter5.ipynb --- .../Chapter7.ipynb | 505 +++++++++++++++++++++ 1 file changed, 505 insertions(+) create mode 100644 Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb (limited to 'Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb') diff --git a/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb new file mode 100644 index 00000000..45af7d98 --- /dev/null +++ b/Power_Electronics_Principles_and_Applications_by_Jacob/Chapter7.ipynb @@ -0,0 +1,505 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Switiching Power Supplies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.1,Page 326" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duty cycle is 0.25\n", + "average voltage is 3.0 V\n" + ] + } + ], + "source": [ + "#finding duty cycle and average voltage\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "T=20.0;#time\n", + "Vp=12.0;#voltage\n", + "t=5.0;\n", + "\n", + "#calculation\n", + "D=t/T;\n", + "Vd=(D*Vp);\n", + "\n", + "#result\n", + "print \"duty cycle is\",round(D,3)\n", + "print \"average voltage is\",round(Vd,3), \"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.2,Page 238" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duty cycle is 42.0 %\n", + "time is 10.0 microsec\n", + "on time is 4.167 microsec\n", + "ripple current is 133.636 mA\n", + "load current is 500.0 mA\n", + "peak inductor current is 566.818 mA\n" + ] + } + ], + "source": [ + "#finding on time ripple,load,peak inductor current\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vd=12.0;#voltage\n", + "Vl=5.0;#load voltage\n", + "Rl=10.0;#load resistance\n", + "f=100.0;#frequency\n", + "L=220.0;#inductor\n", + "\n", + "#calculation\n", + "D=Vl/Vd;\n", + "T=1/f;\n", + "t=D*T;\n", + "Vr=Vd-Vl;\n", + "I=Vr*round(t*10000)/10/L;\n", + "Il=Vl/Rl;\n", + "Ip=Il+I/2;\n", + "\n", + "#result\n", + "print \"duty cycle is\",round(D*100), \"%\"\n", + "print \"time is\",round(T*1000,3), \"microsec\"\n", + "print \"on time is\",round(t*10000,2)/10, \"microsec\"\n", + "print \"ripple current is\",round(I*1000,3),\"mA\"\n", + "print \"load current is\",round(Il*1000,3), \"mA\"\n", + "print \"peak inductor current is\",round(Ip*1000,3), \"mA\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.3,Page 335" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rms current is 325.01 mA\n", + "by trapezium method\n", + "rms current is 324.04 mA\n", + "by rectangle method\n", + "\n", + " rectangle method gives good result than trapezium method\n" + ] + } + ], + "source": [ + "#finding rms current\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Id=500.0;#load current\n", + "i=134;#mA\n", + "D=.42;#duty cycle\n", + "\n", + "#calculation\n", + "Ip=Id+i/2;\n", + "Im=Id-i/2;\n", + "I1=((D/3)*(Ip**2+Im*Ip+Im**2))**.5;\n", + "I2=D**.5*Id;\n", + "\n", + "#result\n", + "print \"rms current is\",round(I1,2), \"mA\"\n", + "print('by trapezium method')\n", + "print \"rms current is\",round(I2,2), \"mA\"\n", + "print('by rectangle method')\n", + "print '\\n rectangle method gives good result than trapezium method'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.4,Page 336" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage is 0.3 V\n", + "dissipated power is 63.0 mW\n" + ] + } + ], + "source": [ + "#finding voltage and power\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "Vp=.3;#voltage\n", + "I=500.0;#current\n", + "D=.42;#duty cycle\n", + "T=150.0;#temperature\n", + "R=.6;#ohm\n", + "\n", + "#calculation\n", + "Vq=I*R;\n", + "Pq=D*Vq*I;\n", + "\n", + "#result\n", + "print \"voltage is\",round(Vq/1000,2), \"V\"\n", + "print \"dissipated power is\",round(Pq/1000,2), \"mW\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.5,Page 341" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duty cycle is 42.0 %\n", + "time period is 6.667 microsec\n", + "on time is 2.778 microsec\n", + "load current is 500.0 mA\n", + "ripple current is 125.0 mA\n", + "inductor voltage is 7.0 V\n", + "inductor is 155.556 microH\n", + "inductor current is 562.5 mA\n", + "minimum capacitor current is 250.0 mA\n", + "minimum capacitor voltage is 18.0 V\n", + "Rf/Ri is 3.07\n", + "power of LM2595 is 0.33 W\n", + "thermal resistance is 210.998 degreeC/W\n" + ] + } + ], + "source": [ + "#finding all componenets\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "R=10.0;#resistance\n", + "V1=5.0;#V\n", + "V2=12.0;#V\n", + "Ta=80.0;#degreeC\n", + "Tb=150.0;\n", + "f=150.0;#frequency\n", + "\n", + "#calculation\n", + "D=V1/V2;\n", + "T=1/f;\n", + "t=D*T;\n", + "Id=V1/R;\n", + "i=.25*Id;\n", + "Vl=V2-V1;\n", + "L=Vl*t/i;\n", + "Ip=Id+i/2;\n", + "Ic=Id/2;\n", + "Vc=1.5*V2;\n", + "K=V1/1.23-1;\n", + "P=.01*V2+D*Id*1;\n", + "Q=(Tb-Ta)/P-2.2;\n", + "\n", + "#result\n", + "print \"duty cycle is\",round(D*100), \"%\"\n", + "print \"time period is\",round(T*1000,3), \"microsec\"\n", + "print \"on time is\",round(t*1000,3), \"microsec\"\n", + "print \"load current is\",round(Id*1000,3), \"mA\"\n", + "print \"ripple current is\",round(i*1000,3), \"mA\"\n", + "print \"inductor voltage is\",round(Vl,2), \"V\"\n", + "print \"inductor is\",round(L*1000,3), \"microH\"\n", + "print \"inductor current is\",round(Ip*1000,2), \"mA\"\n", + "print \"minimum capacitor current is\",round(Ic*1000,2), \"mA\"\n", + "print \"minimum capacitor voltage is\",round(Vc,3), \"V\"\n", + "print \"Rf/Ri is\",round(K,2)\n", + "print \"power of LM2595 is\",round(P,2), \"W\"\n", + "print \"thermal resistance is\",round(Q,3), \"degreeC/W\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.6,Page 349" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "load power is 15.4 W\n", + "supply power is 17.11 W\n", + "dc current is 1.4 A\n", + "inductor current is 1.57 A\n", + "duty cycle is 0.45\n", + "inductor is 154.29 microH\n", + "transistor power is 352.8 mW\n", + "diode power is 385.0 mW\n", + "capacitor is 157.5 microF\n" + ] + } + ], + "source": [ + "#finding different power,inductor current,inductor value\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V1=12.0#V\n", + "V2=22.0;#V\n", + "I=.7;#A\n", + "f=100.0;#kHz\n", + "R=.4;#ohm\n", + "Vd=.5;\n", + "\n", + "#calculation\n", + "Pl=V2*I;\n", + "Ps=Pl/.9;\n", + "Id=round(Ps/V1*10)/10;\n", + "i=.25*Id;\n", + "Ip=Id+i/2;\n", + "D=round((1-V1/V2)*100)/100;\n", + "t=D/f;\n", + "L=V1*t/i;\n", + "Vp=Id*R;\n", + "Pq=D*Vp*Id;\n", + "Pd=(1-D)*.5*Id;\n", + "C=Id*t/2/20;\n", + "\n", + "#result\n", + "print \"load power is\",round(Pl,2), \"W\"\n", + "print \"supply power is\",round(Ps,2), \"W\"\n", + "print \"dc current is\",round(Id,2), \"A\"\n", + "print \"inductor current is\",round(Ip,2), \"A\"\n", + "print \"duty cycle is\",round(D,2)\n", + "print \"inductor is\",round(L*1000,2), \"microH\"\n", + "print \"transistor power is\",round(Pq*1000,2), \"mW\"\n", + "print \"diode power is\",round(Pd*100,2)*10, \"mW\"\n", + "print \"capacitor is\",round(C*1e6,2), \"microF\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.7,Page 355" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rf/Ri is 16.886\n", + "pick Rf=22; Ri=1.3;\n", + "rms current is 1.4 A\n", + "switch power is 132.3 mW\n", + "IC power is 151.2 mW\n", + "total power is 283.5 mW\n", + "IC temperature is 98.43 degreeC\n" + ] + } + ], + "source": [ + "#finding feedback resistor,power,current and temperature\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V1=12.0;#V\n", + "V2=22.0;#V\n", + "I=.7;#A\n", + "Ta=80.0;#degreeC\n", + "Ps=17.1#supply power\n", + "\n", + "#calculation\n", + "K=V2/1.23-1;\n", + "Id=round(Ps/V1*10)/10;\n", + "D=round((1-(V1/V2))*100)/100;\n", + "Ir=D**.5*Id;\n", + "Ps=Ir**2*.15;\n", + "Pi=D*Id*V1/50;\n", + "P=Ps+Pi;\n", + "T=Ta+P*65;\n", + "\n", + "#result\n", + "print \"Rf/Ri is\",round(K,3)\n", + "print('pick Rf=22; Ri=1.3;')\n", + "print \"rms current is\",round(Id,2), \"A\"\n", + "print \"switch power is\",round(Ps*1000,2), \"mW\"\n", + "print \"IC power is\",round(Pi*1000,2), \"mW\"\n", + "print \"total power is\",round(P*1000,2), \"mW\"\n", + "print \"IC temperature is\",round(T,2), \"degreeC\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 7.8,Page 359" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum voltage is 18.25 V\n", + "diode voltage is 20.0 V\n", + "duty cycle is 0.34\n", + "power delivered is 5.0 W\n", + "average current is 466.67 mA\n", + "mid primary current is 1.37 A\n", + "rms current is 800.33 mA\n", + "ramp current is 480.0 mA\n", + "maximum transistor current is 1.61 A\n", + "minimum transistor current is 1.13 A\n", + "diode peak current is 2.02 A\n", + "secondary rms current is 1.23 A\n", + "capacitor is 170.0 microF\n" + ] + } + ], + "source": [ + "#designing circuit and finding circuit parameter\n", + "\n", + "#initialisation of variable\n", + "from math import pi,tan,sqrt,sin,cos,acos,atan\n", + "V1=12.0;#V\n", + "V2=5.0;#V\n", + "Il=1.0;#load current\n", + "T=10.0;#microsec\n", + "K=1.25;#Npri/Nsec\n", + "L=85.0;#microH\n", + "\n", + "#calculation\n", + "Vq=V1+V2*K;\n", + "Vd=V1*K+V2;\n", + "D=round((K*V2)*100/(V1+K*V2))/100;\n", + "Po=V2*Il;\n", + "Pi=round(Po/.09)/10;\n", + "Id=Pi/V1;\n", + "Im=Id/D;\n", + "Ir=(Im*D**.5);\n", + "i=V1*D*T/L;\n", + "IM=Im+.24;\n", + "Imin=Im-.24;\n", + "Ip=K*IM;\n", + "Imid=Il/(1-D);\n", + "Irms=Imid*(1-D)**.5;\n", + "C=D*Il*T/20;\n", + "\n", + "#result\n", + "print \"maximum voltage is\",round(Vq,2), \"V\"\n", + "print \"diode voltage is\",round(Vd,2), \"V\"\n", + "print \"duty cycle is\",round(D,2)\n", + "print \"power delivered is\",round(Po,2), \"W\"\n", + "print \"average current is\",round(Id*1000,2), \"mA\"\n", + "print \"mid primary current is\",round(Im,2), \"A\"\n", + "print \"rms current is\",round(Ir*1000,2),\"mA\"\n", + "print \"ramp current is\",round(i*1000,2), \"mA\"\n", + "print \"maximum transistor current is\",round(IM,2),\"A\"\n", + "print \"minimum transistor current is\",round(Imin,2),\"A\"\n", + "print \"diode peak current is\",round(Ip,2), \"A\"\n", + "print \"secondary rms current is\",round(Irms,2),\"A\"\n", + "print \"capacitor is\",round(C*1000,2), \"microF\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit