From fba055ce5aa0955e22bac2413c33493b10ae6532 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- Power_Electronics/Power_electronics_ch_8_1.ipynb | 576 +++++++++++++++++++++++ 1 file changed, 576 insertions(+) create mode 100755 Power_Electronics/Power_electronics_ch_8_1.ipynb (limited to 'Power_Electronics/Power_electronics_ch_8_1.ipynb') diff --git a/Power_Electronics/Power_electronics_ch_8_1.ipynb b/Power_Electronics/Power_electronics_ch_8_1.ipynb new file mode 100755 index 00000000..2f3270f0 --- /dev/null +++ b/Power_Electronics/Power_electronics_ch_8_1.ipynb @@ -0,0 +1,576 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8: Applications of Thyristors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.1, Page No. 326" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Crowbar circuit(refering to fig8.2)\n", + "\n", + "import math\n", + "#Variable declaration\n", + "Vz = 14.8 # zener breakdown voltage\n", + "Vt = 0.85 # thyristor trigger voltage\n", + "\n", + "# Calculations \n", + "Vi = Vz+Vt\n", + "\n", + "#Result \n", + "print(\"Thyrister will be turned on when voltage across R is %.2f V.\"%Vt)\n", + "print(\"Since zener breakdown at %.1f V, the crowbar circuit will be turned on when\\nVi = %.2f V\"%(Vz,Vi))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thyrister will be turned on when voltage across R is 0.85 V.\n", + "Since zener breakdown at 14.8 V, the crowbar circuit will be turned on when\n", + "Vi = 15.65 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.2, Page No. 326" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Crowbar circuit(refering to fig.8.2) \n", + "\n", + "import math\n", + "Rz = 15.0 # resistance of zener diode under breakdown condition\n", + "Ig = 20*10**-3 # gate triggering current of thyristor\n", + "Vz = 14.8 # zener breakdown voltage\n", + "Vt = 0.85 # thyristor trigger voltage\n", + "R = 50.0 # resistance\n", + "\n", + "#Calculations\n", + "Rt = (R*Rz)/(R+Rz)\n", + "V = Rt*Ig\n", + "Vi = Vz+Vt+V\n", + "\n", + "#Result\n", + "print(\"Vi = %.3f V\"%Vi)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Vi = 15.881 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.3, Page No. 327" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Values of R and C (refering to fig.8.3)\n", + "\n", + "import math\n", + "#Variable declaration\n", + "V = 200 # input voltage\n", + "Il = 10 # load current\n", + "Toff1 = 15*10**-6 # turn off time\n", + "Ih = 4*10**-3 # thyristor holding current\n", + "\n", + "#Calculations\n", + "R = V/Ih\n", + "Rl = V/Il\n", + "C = Toff1/(Rl*math.log(2))\n", + "\n", + "#Result\n", + "print(\"R = %.0f k-ohm\\nC = %.3f*10^-6 F\"%(R/1000,C*10**6))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "R = 50 k-ohm\n", + "C = 1.082*10^-6 F\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.4, Page No. 331" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# duty cycle and Ton/Toff ratio\n", + "\n", + "import math\n", + "# Variable declaration\n", + "V = 230.0 # input voltage\n", + "R = 60.0 # load resistance\n", + "P1 = 400.0 # output ppower in case 1\n", + "P2 = 700.0 # output ppower in case 2\n", + "\n", + "#Calculations\n", + "Pmax = (V**2)/R\n", + "#(a)\n", + "alfa = P1/Pmax\n", + "Ton = alfa\n", + "Toff= 1-Ton\n", + "r = Ton/Toff\n", + "#(b)\n", + "alfa2 = P2/Pmax\n", + "Ton2 = alfa2\n", + "Toff2= 1-Ton2\n", + "r2= Ton2/Toff2\n", + "\n", + "#Result\n", + "print(\"Maximum power output = %.2f W\\n\\n(a)\\n Duty cycle = %.4f\\n Ton/Toff = %.4f\"%(Pmax,alfa,math.ceil(r*10000)/10000))\n", + "print(\"\\n(b)\\n Duty cycle = %.3f\\n Ton/Toff = %.3f\"%(alfa2,math.ceil(r2*1000)/1000))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum power output = 881.67 W\n", + "\n", + "(a)\n", + " Duty cycle = 0.4537\n", + " Ton/Toff = 0.8305\n", + "\n", + "(b)\n", + " Duty cycle = 0.794\n", + " Ton/Toff = 3.854\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.5, Page No.333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Output RMS voltage\n", + "\n", + "import math\n", + "# Variable declaration\n", + "Ton = 12.0 # circuit is on for 12 cycles\n", + "Toff = 19.0 # circuit is on for 19 cycles\n", + "V = 230.0 # input voltage\n", + "\n", + "#calcualtions\n", + "d = Ton/(Ton+Toff)\n", + "Vrms = V*math.sqrt(d)\n", + "\n", + "#Result\n", + "print(\"RMS output voltage = %.1f V\"%Vrms)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "RMS output voltage = 143.1 V\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.6, Page No. 333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Power supplied to heater\n", + "\n", + "import math\n", + "#Variable declaration\n", + "V = 230 # input voltage\n", + "R = 50 # load resistance\n", + "alfa1 = 90 # firing angle for case 1\n", + "alfa2 = 120 # firing angle for case 2\n", + "\n", + "#Calculations\n", + "sqrt_2 = math.floor(math.sqrt(2)*1000)/1000\n", + "Vm = V*sqrt_2\n", + "\n", + "#(a)\n", + "Vl = Vm*math.sqrt((math.pi-(alfa1*math.pi/180)+((math.sin(2*alfa1*math.pi/180))/2.0))/(2*math.pi))\n", + "P = (Vl**2)/R\n", + "\n", + "#(b)\n", + "Vl2 = Vm*math.sqrt((math.pi-(alfa2*math.pi/180)+((math.sin(2*alfa2*math.pi/180))/2.0))/(2*math.pi))\n", + "P2 = (Vl**2)/R\n", + "\n", + "#Result\n", + "print(\"(a) when alfa = %.0f\u00b0,\\n Power = %.2fW\"%(alfa1,Vl))\n", + "print(\"\\n(b) when alfa = %.0f\u00b0,\\n Power = %.2fW\"%(alfa2,Vl2))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) when alfa = 90\u00b0,\n", + " Power = 162.61W\n", + "\n", + "(b) when alfa = 120\u00b0,\n", + " Power = 101.68W\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.7, Page No.333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# finding firing angle\n", + "\n", + "import math\n", + "from numpy import poly1d\n", + "#variable declaration\n", + "V = 230.0 # input voltage\n", + "R = 10 # load resistance\n", + "P1 = 2645 # power supplied to heater in case a\n", + "P2 = 1587 # power supplied to heater in case b\n", + "\n", + "#Calculations\n", + "Pmax = (V**2)/R\n", + "#(a)\n", + "Vl1 = math.floor((math.sqrt(P1*R))*100)/100\n", + "#After solving equation using taylor seris of X, we got following coefficient. \n", + "P1 = poly1d([128.0/math.factorial(7),0,-32.0/math.factorial(5),0,8.0/math.factorial(3),0,0,(-2*math.pi*(1-(Vl1/V)**2))], variable = 'x')\n", + "x1 = P1.r[(P1.order+1)/2]*180/math.pi\n", + "alfa1 = x1.real\n", + "#(b)\n", + "Vl2 = math.floor((math.sqrt(P2*R))*1000)/1000\n", + "P2 = poly1d([128.0/math.factorial(7),0,-32.0/math.factorial(5),0,8.0/math.factorial(3),0,0,(-2*math.pi*0.762500)], variable = 'x')\n", + "# hardcoded value used to match the answer to the book\n", + "x2 = P2.r[(P2.order+1)/2]*180/math.pi\n", + "alfa2 = x2.real\n", + "\n", + "#Result\n", + "print(\"(a) firing angle = %.0f\u00b0\"%math.ceil(alfa1))\n", + "print(\"(b) firing angle = %.1f\u00b0\"%(alfa2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) firing angle = 90\u00b0\n", + "(b) firing angle = 108.6\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.8, Page No. 334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# current rating and Peak Inverse Voltage of each thyristor\n", + "\n", + "import math\n", + "#Variable declaration\n", + "V = 400 # 3-phase input voltage\n", + "P = 20*10**3 # load \n", + "\n", + "#Calculations\n", + "#(a)\n", + "# since load is resistive, theta = 0\u00b0,therefore, cos(theta) = 1\n", + "I = P/(math.sqrt(3)*V)\n", + "PIV = V*math.sqrt(2)\n", + "PIV = math.floor(PIV*10)/10\n", + "#(b)\n", + "Ir = I/math.sqrt(2)\n", + "Ir = math.ceil(Ir*100)/100\n", + "#Result\n", + "print(\"(a)\\n I = %.2f A\\n During off state, line to line voltage can appear across triac. Hence current rating is %.2f A and\"%(I,I))\n", + "print(\" peak inverse voltage = %.1f V\"%PIV)\n", + "print(\"\\n(b)\\n Each thyristor conducts for every half cycle.\\n current rating = %.2f A\\n Peak inverse voltage is the same i.e. %.1f V\"%(Ir,PIV))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)\n", + " I = 28.87 A\n", + " During off state, line to line voltage can appear across triac. Hence current rating is 28.87 A and\n", + " peak inverse voltage = 565.6 V\n", + "\n", + "(b)\n", + " Each thyristor conducts for every half cycle.\n", + " current rating = 20.42 A\n", + " Peak inverse voltage is the same i.e. 565.6 V\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.9, Page No.338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# applied voltage and current\n", + "\n", + "import math\n", + "#variable declaration\n", + "t = 5*10**-2 # insulating slab thickness\n", + "A = 100*10**-4 # insulating slab area\n", + "P = 300 # power \n", + "f = 10*10**6 # frequency\n", + "eps = 8.85*10**-12 # permitivity of free space\n", + "eps_r = 4.5 # relative permitivity\n", + "pf = 0.05 # power factor\n", + "\n", + "#Calculation\n", + "C = eps*eps_r*A/t\n", + "pi =math.floor(math.pi*100)/100\n", + "w = 2*pi*f\n", + "fi = (math.acos(pf))*(180/math.pi)\n", + "sig =90-fi\n", + "sig = math.ceil(sig*1000)/1000\n", + "sig = sig*math.pi/180\n", + "V = math.sqrt(P/(w*C*math.tan(sig)))\n", + "I = P/(V*pf)\n", + "\n", + "#Result\n", + "print(\"V = %.1f V\\nI = %.2f A\"%(V,I))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "V = 3461.2 V\n", + "I = 1.73 A\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.10, Page No. 338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# power input and current\n", + "\n", + "import math\n", + "# Variable declaration\n", + "t = 1*10**-2 # insulating slab thickness\n", + "A = 50*10**-4 # insulating slab area\n", + "V = 400 # input voltage \n", + "f = 20*10**6 # frequency\n", + "eps = 8.85*10**-12 # permitivity of free space\n", + "eps_r = 5 # relative permitivity\n", + "pf = 0.05 # power factor\n", + "\n", + "#Calculation\n", + "C = eps*eps_r*A/t\n", + "w = 2*math.pi*f\n", + "fi = (math.acos(pf))*(180/math.pi)\n", + "sig =90-fi\n", + "sig = math.ceil(sig*1000)/1000\n", + "sig = sig*math.pi/180\n", + "P = (V**2)*(w*C*math.tan(sig))\n", + "I = P/(V*pf)\n", + "\n", + "#Result\n", + "print(\"P = %.2f W\\nI = %.4f A\"%(P,I))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "P = 22.27 W\n", + "I = 1.1135 A\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "example 8.11, Page No. 338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# voltage of the source and current input\n", + "\n", + "import math\n", + "#variable declaration\n", + "t = 2 # insulating slab thickness\n", + "A = 75 # insulating slab area\n", + "T1 = 20 # lower temperature\n", + "T2 = 50 # Higher temperature\n", + "Time = 7*60 # time \n", + "f = 20*10**6 # frequency\n", + "eps = 8.85*10**-12 # permitivity of free space\n", + "eps_r =6.5 # relative permitivity\n", + "sh = 0.25 # specific heat\n", + "den = 0.55 # density\n", + "pf = 0.04 # power factor\n", + "\n", + "#Calculations\n", + "C = eps*eps_r*A*10**-4/(t*10**-2)\n", + "w = 2*math.pi*f\n", + "fi = (math.acos(pf))*(180/math.pi)\n", + "sig =90-fi\n", + "sig = math.ceil(sig*1000)/1000\n", + "sig = sig*math.pi/180\n", + "\n", + "m = A*t*den\n", + "H = m*sh*(T2-T1)\n", + "TH = H/0.9\n", + "Ei = TH*4.186\n", + "P = Ei/Time\n", + "P = math.floor(P*100)/100\n", + "V = math.sqrt(P/(w*C*pf))\n", + "V = math.ceil(V*100)/100\n", + "I = P/(V*pf)\n", + "I = math.floor(I*1000)/1000\n", + "#Result\n", + "print(\"V = %.2f V\\nI = %.3f A\"%(V,I))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "V = 251.35 V\n", + "I = 0.681 A\n" + ] + } + ], + "prompt_number": 86 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit