From db0855dbeb41ecb8a51dde8587d43e5d7e83620f Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- Power_Electronics/Power_electronics_ch_12_2.ipynb | 1030 --------------------- 1 file changed, 1030 deletions(-) delete mode 100755 Power_Electronics/Power_electronics_ch_12_2.ipynb (limited to 'Power_Electronics/Power_electronics_ch_12_2.ipynb') diff --git a/Power_Electronics/Power_electronics_ch_12_2.ipynb b/Power_Electronics/Power_electronics_ch_12_2.ipynb deleted file mode 100755 index 46f69125..00000000 --- a/Power_Electronics/Power_electronics_ch_12_2.ipynb +++ /dev/null @@ -1,1030 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 12: Integrated Citcuits and Operational Amplifiers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.1, Page No.442" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# dc currents and voltage of differential amplifier\n", - "\n", - "import math\n", - "# Variable declaration\n", - "Vcc = 12 # collector voltage\n", - "Vee = -12 # emitter voltage\n", - "Rc = 4.1*10**3 # Collector resistance\n", - "Re = 3.8*10**3 # emitter resistance\n", - "Vbe = 0.7 # voltage across base-emitter junction\n", - "\n", - "#Calculations\n", - "Ie = (Vcc-Vbe)/Re\n", - "Ic = 0.5*Ie\n", - "Vo = Vcc-Ic*Rc\n", - "\n", - "#Result\n", - "print(\"Ie = %.4f mA\\nIc = %.3f mA\\nVo = %.1f V\"%(Ie*1000,Ic*1000,Vo))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Ie = 2.9737 mA\n", - "Ic = 1.487 mA\n", - "Vo = 5.9 V\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.2, Page No.442" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Differential amplifier parameters\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Vcc = 12 # collector voltage\n", - "Vee = -12 # emitter voltage\n", - "Rc = 1*10**6 # Collector resistance\n", - "Re = 1*10**6 # emitter resistance\n", - "Vbe = 0.7 # voltage across base-emitter junction\n", - "vi = 2.1*10**-3 # AC input voltage\n", - "beta = 75 \n", - "\n", - "#Calculations\n", - "#(a)\n", - "Ie = (Vcc-Vbe)/Re\n", - "ie = 0.5*Ie\n", - "re = (25*10**-3)/ie\n", - "re_dash = 4420.0#value used in the book\n", - "#(b)\n", - "g = Rc/(2*re_dash)\n", - "g = math.floor(g*10)/10\n", - "#(c)\n", - "vo = g*vi\n", - "vo = math.floor(vo*10000)/10000\n", - "#(d)\n", - "Zi = 2*beta*re\n", - "#(e)\n", - "cmg = Rc/(re+2*Re)\n", - "cmg = math.ceil(cmg*1000)/1000\n", - "#(f)\n", - "cmrr = g/cmg\n", - "#(g)\n", - "cmrr_db = 20*math.log10(cmrr)\n", - "\n", - "#Result\n", - "print(\"(a) re = %d ohm\\n(b) voltage gain for differential input = %.1f\\n(c) AC output voltage = %.4f V\"%(re,g,vo))\n", - "print(\"(d) input impedance = %d k-ohm\\n(e) CMRR = %.2f\\n(g) CMRR' = %.1f dB\"%(Zi/1000,cmrr,cmrr_db))\n", - "\n", - "#Answer for re is wong in the book " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) re = 4424 ohm\n", - "(b) voltage gain for differential input = 113.1\n", - "(c) AC output voltage = 0.2375 V\n", - "(d) input impedance = 663 k-ohm\n", - "(e) CMRR = 226.65\n", - "(g) CMRR' = 47.1 dB\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.3, Page No. 447" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Op-amp with negative feedback\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ag = 100000.0 # open loop gain of Op-amp\n", - "fb = 0.01 # feed back factor\n", - "vi = 2*10**-3 # input voltage\n", - "\n", - "#Calculations\n", - "# a\n", - "g = Ag/(1+(fb*Ag))\n", - "# b\n", - "v = vi*g\n", - "# c\n", - "Ev = v/Ag\n", - "\n", - "#Result\n", - "print(\"(a) Closed loop gain = %.1f \\n(b) Output = %.4f V\\n(c) Error voltage = %.3f*10^-6 V\"%(g,v,Ev*10**6))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Closed loop gain = 99.9 \n", - "(b) Output = 0.1998 V\n", - "(c) Error voltage = 1.998*10^-6 V\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.4, Page No. 447" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Op-amp with negative feedback\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Ag = 15000.0 # open loop gain of Op-amp\n", - "fb = 0.01 # feed back factor\n", - "vi = 2*10**-3 # input voltage\n", - "\n", - "#Calculations\n", - "# a\n", - "g = Ag/(1+(fb*Ag))\n", - "# b\n", - "v = vi*g\n", - "# c\n", - "Ev = v/Ag\n", - "\n", - "#Result\n", - "print(\"(a) Closed loop gain = %.3f \\n(b) Output = %.4f V\\n(c) Error voltage = %.3f*10^-5 V\"%(g,v,Ev*10**5))\n", - "print(\"\\nComparison conclusion:\\nA decrease in open loop gain causes a corresponding increase in error voltage,\")\n", - "print(\"thus keeping the output voltage nearly constant.\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Closed loop gain = 99.338 \n", - "(b) Output = 0.1987 V\n", - "(c) Error voltage = 1.325*10^-5 V\n", - "\n", - "Comparison conclusion:\n", - "A decrease in open loop gain causes a corresponding increase in error voltage,\n", - "thus keeping the output voltage nearly constant.\n" - ] - } - ], - "prompt_number": 49 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.5, Page No. 448" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# input/output impedances\n", - "\n", - "import math\n", - "#variable declaration\n", - "g = 100000.0 # open loop gain\n", - "Zi = 2*10**6 # input impedance\n", - "Zo = 75 # output impedance\n", - "beta = 0.01 # feedback factor\n", - "\n", - "#Calculations\n", - "D = 1+ beta*g\n", - "Zi_cl = Zi*D\n", - "Zo_cl = Zo/D\n", - "\n", - "#Result\n", - "print(\"Closed loop input impedance = %.0f M-ohm\\nClosed loop output impedance = %.4f ohm\"%(Zi_cl/10**6,Zo_cl))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Closed loop input impedance = 2002 M-ohm\n", - "Closed loop output impedance = 0.0749 ohm\n" - ] - } - ], - "prompt_number": 53 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.6, Page No.448" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# closed loop gain and disensitivity\n", - "\n", - "import math\n", - "#Variable declaration\n", - "g = 100000.0 # open loop gain\n", - "beta = 0.001 # feedback factor\n", - "\n", - "#calculations\n", - "clg = g/(1+ beta*g)\n", - "D = 1+g*beta\n", - "\n", - "# Result\n", - "print(\"Closed loop gain = %.1f \\nDesensitivity = %.0f \"%(clg,D))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Closed loop gain = 990.1 \n", - "Desensitivity = 101 \n" - ] - } - ], - "prompt_number": 56 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.7, Page No.448" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# closed loop gain and upper cut off frequency\n", - "\n", - "import math\n", - "#Variable declaration\n", - "f = 10**6 # unity gain frequency\n", - "alg = 100000.0 # open loop gain\n", - "b1 = 0.001 # feedback factor in case 1\n", - "b2 = 0.01 # feedback factor in case 2\n", - "b3 = 0.1 # feedback factor in case 3\n", - "\n", - "#calculations\n", - "# a\n", - "f1 = f/alg\n", - "# b\n", - "g2 = alg/(1+alg*b1)\n", - "f2 = f/g2\n", - "# c\n", - "g3 = alg/(1+alg*b2)\n", - "f3 = f/g3\n", - "# d\n", - "g4 = alg/(1+alg*b3)\n", - "f4 = f/g4\n", - "\n", - "#Result\n", - "print(\"Open loop,\\tgain = %.0f \\tf2 = %d Hz\"%(alg,f1))\n", - "print(\"Closed loop,\\tgain = %.1f \\tf2 = %d Hz\"%(g2,f2))\n", - "print(\"Closed loop,\\tgain = %.1f \\tf2 = %d Hz\"%(g3,f3))\n", - "print(\"Closed loop,\\tgain = %.3f \\tf2 = %d Hz\"%(g4,f4))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Open loop,\tgain = 100000 \tf2 = 10 Hz\n", - "Closed loop,\tgain = 990.1 \tf2 = 1010 Hz\n", - "Closed loop,\tgain = 99.9 \tf2 = 10010 Hz\n", - "Closed loop,\tgain = 9.999 \tf2 = 100010 Hz\n" - ] - } - ], - "prompt_number": 60 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.8, Page No.449" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Slew rating\n", - "\n", - "import math\n", - "#Variable declaration\n", - "Imax = 10*10**-6 # maximum current\n", - "C = 4000*10**-12 # capacitance in pF\n", - "\n", - "#Calculations\n", - "sr = Imax/C\n", - "\n", - "#Result\n", - "print(\"Slew rate = %.1f V/ms\"%(sr/1000))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Slew rate = 2.5 V/ms\n" - ] - } - ], - "prompt_number": 63 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.9, Page No. 449" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# slew rate distortion\n", - "\n", - "import math\n", - "#Variable declaration\n", - "sr = 0.4 # Slew rate\n", - "V = 6 # peak value of voltage\n", - "f = 10*10**3 # frequency\n", - "\n", - "#Calculations\n", - "slope = 2*math.pi*f*V\n", - "\n", - "#Result\n", - "print(\"Initial slope of sine wave =%.5f V/micro-sec\"%(slope/10**6))\n", - "print(\"\\nSince the slew rate of amplifier is %.1f V/micro-sec, there is no slew rate distortion.\"%(sr))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Initial slope of sine wave =0.37699 V/micro-sec\n", - "\n", - "Since the slew rate of amplifier is 0.4 V/micro-sec, there is no slew rate distortion.\n" - ] - } - ], - "prompt_number": 70 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.10, Page No. 449" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Slew rate distortion \n", - "\n", - "import math\n", - "#Variable declaration\n", - "sr = 0.5*10**6 # slew rate\n", - "V = 10 # peak value of input signal\n", - "f = 10*10**3 # frequency\n", - "\n", - "#calculations\n", - "# a\n", - "slope = 2*math.pi*f*V\n", - "# b\n", - "Vp = sr/(2*math.pi*f)\n", - "\n", - "#Result\n", - "print(\"(a) Initial slope of sine wave = %.3f V/micro-sec\"%(slope/10**6))\n", - "print(\"Since initial slope is more than the slew rate of amplifier, slew rate distortion will occur.\")\n", - "print(\"\\n(b) To eliminate slew rate distortion,\\n Vp = %.2f V\"%Vp)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Initial slope of sine wave = 0.628 V/micro-sec\n", - "Since initial slope is more than the slew rate of amplifier, slew rate distortion will occur.\n", - "\n", - "(b) To eliminate slew rate distortion,\n", - " Vp = 7.96 V\n" - ] - } - ], - "prompt_number": 72 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.11, Page No.451" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# inverting amplifier\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A = 100000.0 # open loop gain\n", - "Zo = 75.0 # output impedance\n", - "f = 1.0*10**6 # unity gain frequency\n", - "R1 = 1.0*10**3 # Source Resistance \n", - "Rf = 100.0*10**3 # feedback resistance\n", - "\n", - "#Calculations\n", - "# a\n", - "g = -Rf/R1\n", - "# b\n", - "beta = R1/(R1+Rf)\n", - "D = 1+(A*beta)\n", - "# c\n", - "f2 = beta*f\n", - "# d\n", - "Zi_cl = R1\n", - "\n", - "#result\n", - "print(\"(a) Gain = %f\\n(b) disensitivity = %.1f\"%(g,D))\n", - "print(\"(c) closed loop upper cut off frequency = %.1f*10^3 Hz\\n(d) closed loop input impedance = %.0f ohm\"%(f2/1000,Zi_cl))\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Gain = -100.000000\n", - "(b) disensitivity = 991.1\n", - "(c) closed loop upper cut off frequency = 9.9*10^3 Hz\n", - "(d) closed loop input impedance = 1000 ohm\n" - ] - } - ], - "prompt_number": 79 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.12, Page No. 453" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# closed loop voltage gain, input/output impedance(refering to fig 12.11)\n", - "\n", - "import math\n", - "# Variable declaration\n", - "R2 = 100.0*10**3 # Resistance R2\n", - "R1 = 100.0 # Resistance R1\n", - "A = 100000.0 # open loop gain\n", - "Zin = 2*10**6 # input impedance\n", - "Zo = 75 # output impedance\n", - "\n", - "# Calculations\n", - "g = (R1+R2)/R1\n", - "beta = R1/(R1+R2)\n", - "Zi_dash = (1+A*beta)*Zin\n", - "Zo_dash = Zo/(1+A*beta)\n", - "\n", - "#Result\n", - "print(\"Closed loop gain = %.0f \\nClosed loop input impedance = %.1f M-ohm\\nClosed loop output impedance = %.3f ohm\"%(g,Zi_dash/10**6,Zo_dash))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Closed loop gain = 1001 \n", - "Closed loop input impedance = 201.8 M-ohm\n", - "Closed loop output impedance = 0.743 ohm\n" - ] - } - ], - "prompt_number": 84 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.13, Page No.454" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Op-amp parameters(refering to fig. 12.13)\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A = 100000.0 # open loop gain\n", - "f = 1.0*10**6 # unity gain frequency\n", - "R3 = 150 *10**3 # Resistance R3\n", - "Ci = 1*10**-6 # inpuut capacitor\n", - "R2 = 100*10**3 # Resistance R2\n", - "Cb = 1*10**-6 # Bias capacitor\n", - "R1 = 1.0*10**3 # Resistance R1\n", - "Co = 1*10**-6 # output capacitance\n", - "Rl = 15*10**3 # load resistance\n", - "\n", - "#Calculations\n", - "# a\n", - "A = (R1+R2)/R1\n", - "# b\n", - "beta = 1/A\n", - "f2 = f/A\n", - "# c\n", - "fc1 = 1/(2*math.pi*Ci*R3)\n", - "fc2 = 1/(2*math.pi*Cb*Rl)\n", - "fc3 = 1/(2*math.pi*Co*R1)\n", - "\n", - "#Result\n", - "print(\"(a) Avf = %.0f \\n\\n(b) f2' =%.1f*10^3 Hz\"%(A,f2/1000))\n", - "print(\"\\n(c) The critical frequencies are,\\n fc = %.3f Hz\\n fc = %.2f Hz\\n fc = %.2f Hz\"%(fc1,fc2,fc3))\n", - "print(\"\\n(d) Evidently the lower cut off frequency is the highest of the above three critical frequencies, i.e. %.2f Hz\"%fc3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Avf = 101 \n", - "\n", - "(b) f2' =9.9*10^3 Hz\n", - "\n", - "(c) The critical frequencies are,\n", - " fc = 1.061 Hz\n", - " fc = 10.61 Hz\n", - " fc = 159.15 Hz\n", - "\n", - "(d) Evidently the lower cut off frequency is the highest of the above three critical frequencies, i.e. 159.15 Hz\n" - ] - } - ], - "prompt_number": 93 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.14, Page No.455" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# output voltage(referring fig.12.14)\n", - "\n", - "import math\n", - "# Variable declaration\n", - "v1 = 0.5 # input voltage 1\n", - "v2 = 1.5 # input voltage 2\n", - "v3 = 0.2 # input voltage 3\n", - "R1 = 10.0*10**3 # resistance R1\n", - "R2 = 10.0*10**3 # resistance R2\n", - "R3 = 10.0*10**3 # resistance R3\n", - "Rf = 50.0*10**3 # feedback resistance\n", - "\n", - "#Calculations\n", - "vo = -Rf*((v1/R1)+(v2/R2)+(v3/R3))\n", - "\n", - "#Result\n", - "print(\"Output Voltage = %.0f V\"%vo)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Output Voltage = -11 V\n" - ] - } - ], - "prompt_number": 95 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.15, Page No.455" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(\"Theoretical example\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical example\n" - ] - } - ], - "prompt_number": 96 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.16, Page No.456" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(\"Theoretical example\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical example\n" - ] - } - ], - "prompt_number": 97 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.17, Page No. 457" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# difference amplifier(referring fig. 12.18)\n", - "\n", - "import math\n", - "#Variable declaration\n", - "R1 = 50.0*10**3 # Resistance R1\n", - "R2 = 10.0*10**3 # Resistance R2\n", - "Vs1 = 4.5 # input voltage at channel 1\n", - "Vs2 = 5.0 # input voltage at channel 2\n", - "\n", - "\n", - "#Calculations\n", - "vo = R1*(Vs2-Vs1)/R2\n", - "\n", - "#Result\n", - "print(\"Output voltage = %.1f V\"%vo)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Output voltage = 2.5 V\n" - ] - } - ], - "prompt_number": 99 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.18, Page No.458" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# CMRR in dB\n", - "\n", - "import math\n", - "#Variable declaration\n", - "A = 50.0 # gain of difference amplifier\n", - "v = 2.0 # input voltage\n", - "vo = 5.0*10**-3 # output voltage \n", - "\n", - "#Calculations\n", - "Vcom = 0.5*(v+v)\n", - "Acom = vo/Vcom\n", - "cmrr = A/Acom\n", - "cmrr = 20*math.log10(cmrr)\n", - "\n", - "#Result\n", - "print(\"CMRR = %.2f dB\"%(cmrr))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "CMRR = 86.02 dB\n" - ] - } - ], - "prompt_number": 101 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.19, Page No.458" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(\"Theoretical Example\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical Example\n" - ] - } - ], - "prompt_number": 102 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.20, Page No.459" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(\"Theoretical Example\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical Example\n" - ] - } - ], - "prompt_number": 103 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.21, Page No.466" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# two pole high pass filter(referring fig. 12.32)\n", - "\n", - "import math\n", - "#Variable declaration\n", - "R1 = 10.0*10**3 # Resistance R1\n", - "R2 = 5.6*10**3 # Resistance R2\n", - "R = 1.0*10**3 # Resistance R\n", - "C = 0.01 *10**-6 # capacitance \n", - "vi = 1.6*10**-3 # input voltage \n", - "\n", - "#Calculations\n", - "# a\n", - "A = 1+(R2/R1)\n", - "# b\n", - "vo = A*vi\n", - "# c\n", - "pi = math.ceil(math.pi*10000)/10000\n", - "fc = 1/(2*pi*R*C)\n", - "# d\n", - "gain = 0.707*A\n", - "\n", - "#Result\n", - "print(\"(a) midband gain = %.2f\\n(b) output voltage = %.3f mV\\n(c) fc = %.2f Hz\\n(d) Gain = %.3f\"%(A,vo*1000,fc,gain))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) midband gain = 1.56\n", - "(b) output voltage = 2.496 mV\n", - "(c) fc = 15915.46 Hz\n", - "(d) Gain = 1.103\n" - ] - } - ], - "prompt_number": 112 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.22, Page No. 466" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Low pass filter(referring fig. 12.30)\n", - "\n", - "import math\n", - "#Variable declaration\n", - "vi = 1.1*10**-3 # input voltage\n", - "R = 10*10**3 # Resistance\n", - "C = 0.001*10**-6 # Capacitance\n", - "R1 = 10*10**3 # Resistance R1\n", - "R2 = 5.6*10**3 # Resistance R2\n", - "\n", - "#Calculations\n", - "# a\n", - "A = (R1+R2)/R1\n", - "vo1 = A*vi\n", - "# b\n", - "fc = 1/(2*math.pi*R*C)\n", - "# c\n", - "vo = 0.707*vo1\n", - "\n", - "#Result\n", - "print(\"(a) Avf = %.2f\\n Vo = %.3f*10^-3 V\\n(b) fc = %.3f*10^3 Hz\\n(c) at f = fc,\\nVo = %.3f* 10^-3 V\"%(A,vo1*1000,fc/1000,vo*1000))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "(a) Avf = 1.56\n", - " Vo = 1.716*10^-3 V\n", - "(b) fc = 15.915*10^3 Hz\n", - "(c) at f = fc,\n", - "Vo = 1.213* 10^-3 V\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 12.23, Page No.466" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "print(\"Theoretical example\")" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Theoretical example\n" - ] - } - ], - "prompt_number": 6 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit