From 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- .../Chapter_1.ipynb | 533 +++++++++++++++++++++ 1 file changed, 533 insertions(+) create mode 100755 Physical_Chemsitry_by_William_F_Sheehan/Chapter_1.ipynb (limited to 'Physical_Chemsitry_by_William_F_Sheehan/Chapter_1.ipynb') diff --git a/Physical_Chemsitry_by_William_F_Sheehan/Chapter_1.ipynb b/Physical_Chemsitry_by_William_F_Sheehan/Chapter_1.ipynb new file mode 100755 index 00000000..ca5fb73c --- /dev/null +++ b/Physical_Chemsitry_by_William_F_Sheehan/Chapter_1.ipynb @@ -0,0 +1,533 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1833f0f72d4fcfdfc05d274c870f8929bea706e80b14f9268d3407df8540de4d" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1 - Kinetic theory of gases and equations of state" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1 - Pg 5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the final volume of the gas\n", + "#initialisation of variables\n", + "V= 22.394 #l\n", + "m= 32 #gm\n", + "T= 0 #C\n", + "T1= 50. #C\n", + "p= .8 #atm\n", + "#CALCULATIONS\n", + "V1= (T1+273.16)*V/(T+273.16)\n", + "V2= (1./p)*V1\n", + "#RESULTS\n", + "print '%s %.3f %s' % (' Volume = ',V2,'lt')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Volume = 33.116 lt\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2 - Pg 7" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate gthe argon temperature\n", + "#initialisation of variables\n", + "P= 1 #atm\n", + "T= 0 #C\n", + "#CALCULATIONS\n", + "T1= 10*(T+273.2)\n", + "#RESULTS\n", + "print '%s %.1f %s' %(' Argon temperature =',T1,' K')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Argon temperature = 2732.0 K\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3 - Pg 9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the Atomic Weight\n", + "#initialisation of variables\n", + "x= 0.0820544\n", + "T= 0 #C\n", + "l= 1.7826 #gl^-1atm^-1\n", + "#CALCULATIONS\n", + "M= x*(273.16+T)*l\n", + "#RESULTS\n", + "print '%s %.3f %s' % (' Atomic Weight =',M,'gm mole^-1')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Atomic Weight = 39.955 gm mole^-1\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4 - Pg 11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the Molecular weight and molecular formula\n", + "#initialisation of variables\n", + "g=.270 #g\n", + "R=0.08205\n", + "T=296.4 #K\n", + "P=754.6/760.0 #atm\n", + "V=0.03576 #lt\n", + "m1= 12\n", + "m2= 19\n", + "m3= 35.46\n", + "yx=.57\n", + "#CALCULATIONS\n", + "M1=g*R*T/(P*V)\n", + "y=round(yx*M1/m3)\n", + "n=round((M1-m3*y+m2)/(2*m2+m1))\n", + "x=2*n-1\n", + "M= n*m1+x*m2+y*m3\n", + "#RESULTS\n", + "print '%s %.2f %s' %('Approximate molecular weight = ',M1,\"gms\")\n", + "print '%s %.2f %s' % (' Molecular weight =',M,' gms')\n", + "print '%s %d %s %d %s %d' %('Molecular formula is C',n,'F',x,'Cl',y)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Approximate molecular weight = 184.94 gms\n", + " Molecular weight = 187.38 gms\n", + "Molecular formula is C 2 F 3 Cl 3\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5 - Pg 14" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the pressure in both cases\n", + "#initialisation of variables\n", + "n= 10 #moles\n", + "R= 0.08205 #atml/molK\n", + "T= 300 #K\n", + "V= 4.86 #l\n", + "b= 0.0643 #ml mol**-1\n", + "a= 5.44 #l**2\n", + "#CALCULATIONS\n", + "P= n*R*T/V\n", + "P1= (n*R*T/(V-n*b))-(a*n**2/V**2)\n", + "#RESULTS\n", + "print '%s %.1f %s' % (' Pressure in case of perfect gas law=',P,' atm')\n", + "print '%s %.1f %s' % (' \\n Pressure in case of vanderwaals equation =',P1,' atm')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Pressure in case of perfect gas law= 50.6 atm\n", + " \n", + " Pressure in case of vanderwaals equation = 35.3 atm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6 - Pg 20" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the pressure of the gas\n", + "#initialisation of variables\n", + "n= 10 #moles\n", + "T= 300 #K\n", + "V= 4.86 #l\n", + "R= 0.08205 #atml/molK\n", + "v= 0.1417 #l\n", + "T1= 305.7 #K\n", + "#CALCULATIONS\n", + "b= v/2\n", + "a= 2*v*R*T1\n", + "P= ((n*R*T)/(V-n*b))*2.71**(-a*n/(V*R*T))\n", + "#RESULTS\n", + "print '%s %.1f %s' % (' Pressure =',P,' atm')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Pressure = 32.8 atm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7 - Pg 23" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the root mean square velocity\n", + "#initialisation of variables\n", + "import math\n", + "from math import sqrt\n", + "T= 0 #C\n", + "T1= 100 #C\n", + "R= 8.314 #atm lit/mol K\n", + "n= 3\n", + "M= 2.016 #gm\n", + "M1= 28.02 #gm\n", + "M2= 146.1 #gm\n", + "#CALCULATIONS\n", + "u= sqrt(n*R*10**7*(T+273.2)/M)\n", + "u1= sqrt(n*R*10**7*(T+273.2)/M1)\n", + "u2= sqrt(n*R*10**7*(T+273.2)/M2)\n", + "u3= sqrt(n*R*10**7*(T1+273.2)/M)\n", + "u4= sqrt(n*R*10**7*(T1+273.2)/M1)\n", + "u5= sqrt(n*R*10**7*(T1+273.2)/M2)\n", + "#RESULTS\n", + "print '%s %.2f %s' % (' root mean square velocity of H2 at 0 C =',u*10**-4,' cm/sec')\n", + "print '%s %.3f %s' % (' \\n root mean square velocity of N2 at 0 C=',u1*10**-4,' cm/sec')\n", + "print '%s %.3f %s' % (' \\n root mean square velocity of SF6 at 0 C =',u2*10**-4,'cm/sec')\n", + "print '%s %.2f %s' % (' \\n root mean square velocity of H2 at 100 C =',u3*10**-4,' cm/sec')\n", + "print '%s %.3f %s' % (' \\n root mean square velocity of N2 at 100 C =',u4*10**-4,' cm/sec')\n", + "print '%s %.3f %s' % (' \\n root mean square velocity of SF6 at 100 C =',u5*10**-4,' cm/sec')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " root mean square velocity of H2 at 0 C = 18.38 cm/sec\n", + " \n", + " root mean square velocity of N2 at 0 C= 4.931 cm/sec\n", + " \n", + " root mean square velocity of SF6 at 0 C = 2.160 cm/sec\n", + " \n", + " root mean square velocity of H2 at 100 C = 21.49 cm/sec\n", + " \n", + " root mean square velocity of N2 at 100 C = 5.764 cm/sec\n", + " \n", + " root mean square velocity of SF6 at 100 C = 2.524 cm/sec\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9 - Pg 34" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Calculate the no. of collisions in He and N2\n", + "#Initialisation of variables\n", + "import math\n", + "from math import sqrt\n", + "P= 1 #at,\n", + "T= 300 #K\n", + "R= 82.05 #atm l/mol K\n", + "R1= 8.314\n", + "s= 4*10**-8 #cm\n", + "s1= 2*10**-8 #cm\n", + "m= 4 #gm\n", + "m1= 28 #gm\n", + "#CALCULATIONS\n", + "N= P*6.02*10**23/(R*T)\n", + "n= 2*s1**2*N**2*sqrt(math.pi*R1*10**7*T/m)\n", + "n1= 2*s**2*N**2*sqrt(math.pi*R1*10**7*T/m1)\n", + "#RESULTS\n", + "print '%s %.e %s' % (' no of collisions =',n,'collisions sec^-1 mol^-1')\n", + "print '%s %.2e %s' % (' \\n no of collisions =',n1,' collisions sec^-1 mol^-1')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " no of collisions = 7e+28 collisions sec^-1 mol^-1\n", + " \n", + " no of collisions = 1.01e+29 collisions sec^-1 mol^-1\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10 - Pg 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the viscosity of N2\n", + "#initialisation of variables\n", + "import math\n", + "from math import sqrt\n", + "M= 28 #gm\n", + "R= 8.314*10**7 #atm l/mol K\n", + "N= 6.023*10**23\n", + "T= 300 #K\n", + "s= 4*10**-8#cm\n", + "#CALCULATIONS\n", + "m= M/N\n", + "k= R/N\n", + "n= (5./16.)*sqrt(math.pi*m*k*T)/(math.pi*s**2)\n", + "#RESULTS\n", + "print '%s %.2e %s' % (' viscosity =',n,'poise')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " viscosity = 1.53e-04 poise\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12 - Pg 45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the Increase in energy per degree for 1 mole of gas\n", + "#initialisation of variables\n", + "n= 3\n", + "R= 2 #cal mol^-1 deg^-1\n", + "#CALCULATIONS\n", + "I= n*R\n", + "#RESULTS\n", + "print '%s %.1f %s' %(' Increase in energy =',I,'cal mol^-1 deg^-1')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Increase in energy = 6.0 cal mol^-1 deg^-1\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13 - Pg 51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the Dipole moment and percentage of ionic character\n", + "#initialisation of variables\n", + "import math\n", + "k= 1.38*10**-16\n", + "N= 6*10**23 #molecules\n", + "a= 105 #degrees\n", + "l= 0.957 #A\n", + "e= 4.8*10**-10 #ev\n", + "#CALCULATIONS\n", + "u= math.sqrt(9*k*2.08*10**4/(4*math.pi*N))\n", + "uh= u/(2*math.cos(a*math.pi/180/2.))\n", + "z= uh/(l*e*10**-8) \n", + "#RESULTS\n", + "print '%s %.2e %s' % (' Dipole moment of H2O=',u,'e.s.u.cm')\n", + "print '%s %.2e %s' % (' \\n Dipole moment of OH bond =',uh,'e.s.u.cm')\n", + "print '%s %.2f' % (' \\n fraction of ionic character =',z)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Dipole moment of H2O= 1.85e-18 e.s.u.cm\n", + " \n", + " Dipole moment of OH bond = 1.52e-18 e.s.u.cm\n", + " \n", + " fraction of ionic character = 0.33\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 14 - Pg 52" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#calculate the dielectric constant\n", + "#initialisation of variables\n", + "import math\n", + "u= 1.44*10**-18 #e.s.u\n", + "k= 3.8*10**-16 \n", + "T= 273. #k\n", + "N= 6.023*10**23 #molecules\n", + "v= 6. #cc\n", + "Vm= 44.8*10**3 #cc\n", + "#CALCULATIONS\n", + "Pm= v+(4*math.pi*N*u**2/(3*3*k*T))\n", + "r= Pm/Vm\n", + "k= (2*r+1)/(1-r)\n", + "#RESULTS\n", + "print '%s %.5f' % (' dielectric constant =',k)\n", + "print 'The answer is a bit different due to rounding off error in textbook'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " dielectric constant = 1.00153\n", + "The answer is a bit different due to rounding off error in textbook\n" + ] + } + ], + "prompt_number": 13 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit