From d36fc3b8f88cc3108ffff6151e376b619b9abb01 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- .../chapter4_1.ipynb | 356 --------------------- 1 file changed, 356 deletions(-) delete mode 100755 Optical_fiber_communication_by_gerd_keiser/chapter4_1.ipynb (limited to 'Optical_fiber_communication_by_gerd_keiser/chapter4_1.ipynb') diff --git a/Optical_fiber_communication_by_gerd_keiser/chapter4_1.ipynb b/Optical_fiber_communication_by_gerd_keiser/chapter4_1.ipynb deleted file mode 100755 index 67742607..00000000 --- a/Optical_fiber_communication_by_gerd_keiser/chapter4_1.ipynb +++ /dev/null @@ -1,356 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:5598be9aef1350639437f4862626120c2629ec5b43239811079d2ec95f6c2031" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 4: Optical Sources" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.1, Page Number: 136" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "m = 9.11*1e-31 #Electron rest mass (kg)\n", - "me = 6.19*10**-32 #Effective electron mass = 0.068m (kg)\n", - "mh = 5.10*10**-31 #Effective hole mass = 0.56m (kg) \n", - "Eg = 1.42*1.60218*1e-19 #bandgap energy (volts)\n", - "kB = 1.38054*1e-23 #Boltzman's constant\n", - "T = 300 #room temperature (kelvin)\n", - "h = 6.6256*1e-34 #Planck's constant\n", - "\n", - "#calculation\n", - "K = 2.0*((2.0*math.pi*kB*T/(h**2.0))**(1.5))*((me*mh)**(0.75)) #characteristic constant of material\n", - "ni = K*(math.exp(-Eg/(2.0*kB*T))) #intrinsic carrier concentration(1/m^3)\n", - "\n", - "#result\n", - "print \"Instrinsic carrier concentration = \",round(ni*10**-12+0.07,2)*1e12,\"1/m^3\",\"=\",round(ni*10**-12+0.07,2)*10**6 ,\"1/cm^3\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Instrinsic carrier concentration = 2.62e+12 1/m^3 = 2620000.0 1/cm^3\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.3, Page Number: 146" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "x = 0.07 #compositional parameter of GaAlAs\n", - "\n", - "#calculation\n", - "Eg = 1.424+1.266*x+0.266*x**2 #energy gap(eV)\n", - "Lam_bda = 1.240/Eg #peak emission wavelength(um) \n", - "\n", - "#result\n", - "print \"Bandgap energy Eg = \" ,round(Eg,2),\"eV\" \n", - "print \"Peak emission Wavelength lam_bda = \" ,round(Lam_bda,2),\"um\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Bandgap energy Eg = 1.51 eV\n", - "Peak emission Wavelength lam_bda = 0.82 um\n" - ] - } - ], - "prompt_number": 45 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.4, Page Number: 146" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "y = 0.57 #compositional parameter of InGaAsP\n", - "\n", - "#calculation\n", - "Eg = 1.35-0.72*y+0.12*(y**2) #energy gap(eV)\n", - "Lam_bda = 1.240/Eg #peak emission wavelength(um) \n", - "\n", - "#result\n", - "print \"Bandgap energy Eg = \" ,round(Eg,2),\"eV\" \n", - "print \"Peak emission wavelength Lam_bda = \" ,round(Lam_bda,2),\"um\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Bandgap energy Eg = 0.98 eV\n", - "Peak emission wavelength Lam_bda = 1.27 um\n" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.5, Page Number: 149" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "tuo_r = 30.0 #radiative re-combination (ns)\n", - "tuo_nr =100.0 #non-radiative re-combination (ns)\n", - "h = 6.6256*1e-34 #Plank's constant (J.s)\n", - "C = 3.0*1e8 #free space velocity (m/sec)\n", - "q = 1.602*1e-19 #electron charge (coulombs)\n", - "I = 0.040 #drive current (Amps)\n", - "Lam_bda = 1.31*1e-6 #peak wavelength of InGaAsP LED\n", - "\n", - "#calculation\n", - "tuo_ = (tuo_r*tuo_nr)/(tuo_r+tuo_nr) #bulk recombination time(ns)\n", - "Etta_internal = tuo_/tuo_r #internal quantum efficiency\n", - "Pinternal = Etta_internal*h*C*I/(q*Lam_bda) #internal power level(mW)\n", - "\n", - "#result\n", - "print \"Bulk recombination time = \" ,round(tuo_,1),\"ns\"\n", - "print \"Internal quantum efficiency Etta_internal = \", round(Etta_internal,2)\n", - "print \"Internal power level = \" , round(Pinternal*1000,1), \"mW\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Bulk recombination time = 23.1 ns\n", - "Internal quantum efficiency Etta_internal = 0.77\n", - "Internal power level = 29.1 mW\n" - ] - } - ], - "prompt_number": 47 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.6, Page Number: 151" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "n = 3.5 #refractive index of an LED\n", - "\n", - "#calculation\n", - "Etta_External = 1/(n*(n+1)**2) #external quantum efficiency\n", - "\n", - "#result\n", - "print \"External quantum efficiency = \",round(Etta_External*100,2), \"%\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "External quantum efficiency = 1.41 %\n" - ] - } - ], - "prompt_number": 49 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.7, Page Number: 157" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "L = 500*1e-6 #Laser diode length (meters)\n", - "R1 = 0.32 #reflection co-efficient value of one end \n", - "R2 = 0.32 #reflection co-efficient value of another end \n", - "alpha_bar =10*100 #absorption co-efficient(1/cm)\n", - "\n", - "#calculation\n", - "alpha_end = (1/(2*L))*(math.log(1/(R1*R2))) #mirrorloss in the lasing cavity\n", - "alpha_threshold = alpha_bar+alpha_end #the lasing threshold(1/cm)\n", - "\n", - "\n", - "#result\n", - "print \"The lasing threshold gain = \" , round(alpha_threshold/100),\"1/cm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The lasing threshold gain = 33.0 1/cm\n" - ] - } - ], - "prompt_number": 72 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.8, Page Number: 161" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "Lam_bda = 850*1e-9 #Emission wavelength of LASER diode(nm)\n", - "n = 3.7 #refractive index of LASER diode\n", - "L = 500.0*1e-6 #length of LASER diode(um)\n", - "C = 3*1e8 #velocity of Light in free space(m/s)\n", - "Half_power = 2*1e-9 #half power point 3 (nm)\n", - "\n", - "#calculation\n", - "delta_frequency = C/((2*L)*n) #frequency spacing(GHz)\n", - "delta_Lamda = (Lam_bda**2)/((2*L)*n) #wavelength spacing(nm)\n", - "sigma = math.sqrt(-(Half_power**2)/(2*math.log(0.5))) #spectral width of gain(nm)\n", - "\n", - "#result\n", - "print \"Freqency spacing = \" ,round(delta_frequency/1e9),\"GHz\"\n", - "print \"Wavelegth spacing = \" , round(delta_Lamda/1e-9,2),\"nm\"\n", - "print \"Spectral width of gain = \" , round(sigma/1e-9,2),\"nm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Freqency spacing = 81.0 GHz\n", - "Wavelegth spacing = 0.2 nm\n", - "Spectral width of gain = 1.7 nm\n" - ] - } - ], - "prompt_number": 74 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 4.9, Page Number: 161" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#variable declaration\n", - "Lam_bda = 900*10e-9 # wavelength of light emitted by laser diode(nm)\n", - "L = 300*10e-6 #length of laser chip(um)\n", - "n = 4.3 #refractive index of the laser material\n", - "\n", - "#calculation\n", - "m = 2*L*n/Lam_bda #number of half-wavelengths\n", - "delta_Lambda = (Lam_bda**2)/(2*L*n) #wavelength spacing(nm)\n", - "\n", - "#result\n", - "print \"Number of half-wavelength spanning the region betwen mirror = \" , round(m)\n", - "print \"Wavelength spacing between lasing modes = \" , round(delta_Lambda*1e8,1),\"nm\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of half-wavelength spanning the region betwen mirror = 2867.0\n", - "Wavelength spacing between lasing modes = 0.3 nm\n" - ] - } - ], - "prompt_number": 3 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit