From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb | 258 +++++++++++++++++++++++++++ 1 file changed, 258 insertions(+) create mode 100755 Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb (limited to 'Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb') diff --git a/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb new file mode 100755 index 00000000..45ed5766 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb @@ -0,0 +1,258 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "7: Atomic physics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.1, Page number 113" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mewB=9.27*10**-24;\n", + "B=3; #magnetic field(T)\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "\n", + "#Calculation\n", + "E=2*mewB*B/e; #energy difference(eV)\n", + "\n", + "#Result\n", + "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy difference is 3.48 *10**-4 eV\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.3, Page number 118" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "l=2;\n", + "s=1/2;\n", + "j1=2+(1/2);\n", + "j2=2-(1/2);\n", + "\n", + "#Calculation\n", + "L=math.sqrt(l*(l+1)); #value of L(hbar)\n", + "S=math.sqrt(s*(s+1)); #value of S(hbar)\n", + "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n", + "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n", + "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n", + "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n", + "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n", + "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n", + "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n", + "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n", + "\n", + "#Result\n", + "print \"value of L is\",round(L,3),\"hbar\"\n", + "print \"value of S is\",round(S,3),\"hbar\"\n", + "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n", + "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n", + "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n", + "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of L is 2.449 hbar\n", + "value of S is 0.866 hbar\n", + "value of J for D5/2 state is 2.958 hbar\n", + "value of J for D3/2 state is 1.936 hbar\n", + "angle between L and S for D5/2 is 61.87 degrees\n", + "angle between L and S for D3/2 is 135 degrees\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.10, Page number 136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "S=1;\n", + "L=1; \n", + "J=1;\n", + "\n", + "#Calculation\n", + "a=L*(L+1)-(L*(L+1));\n", + "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n", + "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n", + "g2=1+b; #lande's g-factor for pure spin angular momentum\n", + "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n", + "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n", + "\n", + "#Result\n", + "print \"lande's g-factor for pure orbital angular momentum is\",g1\n", + "print \"ande's g-factor for pure spin angular momentum is\",g2\n", + "print \"lande's g-factor for state 3P1 is\",g3" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lande's g-factor for pure orbital angular momentum is 1.0\n", + "ande's g-factor for pure spin angular momentum is 2.0\n", + "lande's g-factor for state 3P1 is 1.5\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.12, Page number 141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "EKalpha=21.99; #energy in silver(keV)\n", + "EKbita=25.145; #energy in silver(keV)\n", + "E=-25.514; #energy of n=1 state(keV)\n", + " \n", + "#Calculation\n", + "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n", + "E2=-E-EKalpha; #binding energy of L electron(keV)\n", + "\n", + "#Result\n", + "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n", + "print \"binding energy of L electron is\",E2,\"keV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of L alpha X ray is 3.155 keV\n", + "binding energy of L electron is 3.524 keV\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.13, Page number 141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #planck's constant(Js)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "Z=11; #atomic number\n", + "R=1.097*10**7; #value of R(per m)\n", + "\n", + "#Calculation\n", + "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n", + "\n", + "#Result\n", + "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n", + "print \"answer given in the book is wrong\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of k aplha X-ray is 1.64 *10**-16 keV\n", + "answer given in the book is wrong\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit