From c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb | 293 ++++++++++++++++++++++++++ 1 file changed, 293 insertions(+) create mode 100755 Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb (limited to 'Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb') diff --git a/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb new file mode 100755 index 00000000..61dae782 --- /dev/null +++ b/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb @@ -0,0 +1,293 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:d405bf204e77196ade310e0be88ebb97609af7dc21d3bd3e418e5c80ec00e4d3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "17: Nuclear properties" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.1, Page number 324" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=1.67*10**-27; #nucleon mass(kg)\n", + "R0=1.2*10**-15; #radius of nucleus(m)\n", + "\n", + "#Calculation\n", + "d=m*3/(4*math.pi*R0**3); #density of nucleus(kg/m**3)\n", + "\n", + "#Result\n", + "print \"density of nucleus is\",round(d/10**17,1),\"*10**17 kg/m**3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "density of nucleus is 2.3 *10**17 kg/m**3\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.2, Page number 324" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=1.2*10**-15;\n", + "k=9*10**9; #value of N(Nm**2/C**2)\n", + "q1=2;\n", + "q2=90;\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "\n", + "#Calculation\n", + "r=a*((4**(1/3))+(228**(1/3))); #distance(m)\n", + "E=k*q1*q2*e**2/r; #kinetic energy(J)\n", + "E=E/(e*10**6); #kinetic energy(MeV)\n", + "\n", + "#Result\n", + "print \"potential energy is 0. kinetic energy is\",round(E,1),\"MeV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "potential energy is 0. kinetic energy is 28.1 MeV\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.3, Page number 326" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=2.48*10**4; #electric field(V/m)\n", + "m=1.6605*10**-27; #nucleon mass(kg)\n", + "e=1.6*10**-19; #conversion factor from J to eV\n", + "B=0.75; #magnetic field(T)\n", + "\n", + "#Calculation\n", + "r1=E*12*m/(e*B**2); #distance on photographic plate for 12C(m)\n", + "r1=r1*10**3; #distance on photographic plate for 12C(mm)\n", + "r2=E*13*m/(e*B**2); #distance on photographic plate for 13C(m)\n", + "r2=r2*10**3; #distance on photographic plate for 13C(mm)\n", + "r3=E*14*m/(e*B**2); #distance on photographic plate for 14C(m)\n", + "r3=r3*10**3; #distance on photographic plate for 14C(mm)\n", + "r4=(2*r2)-(2*r1); #distance between lines of 13C and 12C(mm)\n", + "r5=(2*r3)-(2*r2); #distance between lines of 14C and 13C(mm)\n", + "r=r4/2; #distance if ions are doubly charged(mm)\n", + "\n", + "#Result\n", + "print \"distance on photographic plate for 12C is\",round(r1,2),\"mm\"\n", + "print \"distance on photographic plate for 13C is\",round(r2,2),\"mm\"\n", + "print \"distance on photographic plate for 14C is\",round(r3,2),\"mm\"\n", + "print \"distance if ions are doubly charged is\",round(r,2),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "distance on photographic plate for 12C is 5.49 mm\n", + "distance on photographic plate for 13C is 5.95 mm\n", + "distance on photographic plate for 14C is 6.41 mm\n", + "distance if ions are doubly charged is 0.46 mm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.4, Page number 327" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=6; #number of neutrons\n", + "p=6; #number of protons\n", + "M=12; #mass of 12C6(u)\n", + "E=931.5; #energy(MeV)\n", + "\n", + "#Calculation\n", + "mn=n*1.008665; #mass of neutrons(u)\n", + "mp=p*1.007825; #mass of hydrogen atoms(u)\n", + "m=mp+mn; #total mass(u)\n", + "md=m-M; #mass deficiency(u)\n", + "BE=md*E; #binding energy(MeV)\n", + "be=BE/12; #average binding energy per nucleon(MeV)\n", + "\n", + "#Result\n", + "print \"binding energy is\",round(BE,2),\"MeV\"\n", + "print \"average binding energy per nucleon is\",round(be,2),\"MeV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "binding energy is 92.16 MeV\n", + "average binding energy per nucleon is 7.68 MeV\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.6, Page number 335" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "M22Na=21.9944; #mass of 22Na(u)\n", + "m=1.008665; #mass of last neutron(u)\n", + "M23Na=22.989767; #mass of 23Na(u)\n", + "E=931.5; #energy(MeV)\n", + "\n", + "#Calculation\n", + "M=M22Na+m; \n", + "md=M-M23Na; #mass deficiency(u)\n", + "BE=md*E; #binding energy(MeV)\n", + "\n", + "#Result\n", + "print \"binding energy is\",round(BE,1),\"MeV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "binding energy is 12.4 MeV\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 17.7, Page number 341" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "hbar=1.05*10**-34; \n", + "c=3*10**8; #speed of light(m/s)\n", + "mpi=140; #mass of pi-meson(MeV/c**2)\n", + "e=1.6*10**-13;\n", + "\n", + "#Calculation\n", + "r=hbar*c/(mpi*e); #range of nuclear force(m)\n", + "\n", + "#Result\n", + "print \"range of nuclear force is\",round(r*10**15,1),\"fm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "range of nuclear force is 1.4 fm\n" + ] + } + ], + "prompt_number": 13 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit