From 4a1f703f1c1808d390ebf80e80659fe161f69fab Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- .../Chapter14.ipynb | 269 +++++++++++++++++++++ 1 file changed, 269 insertions(+) create mode 100755 Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb (limited to 'Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb') diff --git a/Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb b/Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb new file mode 100755 index 00000000..5bdfcf5d --- /dev/null +++ b/Microelectronic_Circuits_by_A.S._Sedra_and_K.C._Smith/Chapter14.ipynb @@ -0,0 +1,269 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:04c770610947ad7b99d743d99cd805c99779dc1a6616f379e3e115323e61d9f6" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter14:Output Stages and Power Amplifiers" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14.1:pg-1239" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Example 14.1 To design a Class B Output Amplifier\n", + "\n", + "P_L=20; # Average power (W) \n", + "R_L=8; # Load resistance (ohm)\n", + "V_o=math.sqrt(2*P_L*R_L); \n", + "print round(V_o,1),\"= Supply voltage required (V)\"\n", + "V_CC=23; # We select this voltage (V)\n", + "I_o=V_o/R_L;\n", + "print round(I_o,2),\"= Peak current drawn from each supply (A)\"\n", + "P_Sav=V_CC*I_o/math.pi; # P_S+ = P_S- = P_Sav\n", + "P_S=P_Sav+P_Sav; # Total supply power\n", + "print round(P_S,1),\"= The total power supply (W)\"\n", + "n=P_L/P_S; # n is power conversion efficiency\n", + "print round(n*100),\" = Power conversion efficiency %\"\n", + "P_DPmax=V_CC**2/(math.pi**2*R_L);\n", + "P_DNmax=P_DPmax;\n", + "print round(P_DPmax,1),\"= Maximun power dissipated in each transistor (W)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "17.9 = Supply voltage required (V)\n", + "2.24 = Peak current drawn from each supply (A)\n", + "32.7 = The total power supply (W)\n", + "61.0 = Power conversion efficiency %\n", + "6.7 = Maximun power dissipated in each transistor (W)\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14.2:pg-1245" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Example 14.2 To determine quiescent current and power\n", + "# Consider Class AB Amplifier\n", + "V_CC=15; # (V)\n", + "R_L=100; # (ohm)\n", + "v_O=-10; # Amplitude of sinusoidal output voltage (V)\n", + "I_S=10**-13; # (A)\n", + "V_T=25*10**-3; # (V)\n", + "B=50; # Beta value\n", + "i_Lmax=10/(0.1*10**3); # Maximum current through Q_N (A)\n", + "# Implies max base curent in Q_N is approximately 2mA\n", + "I_BIAS=3*10**-3; # We select I_BIAS=3mA in order to maintain a minimum of 1mA through the diodes\n", + "I_Q=9*10**-3; # The area ratio of 3 yeilds quiescent current of 9mA\n", + "P_DQ=2*V_CC*I_Q;\n", + "print round(P_DQ*1000),\"= Quiescent power dissipation (mW)\"\n", + "#For v_O=0V base current of Q_N is 9/51=0.18 mA\n", + "# Leaves a current of 3-0.18=2.83mA to flow through the diodes\n", + "I_S= (10**-13)/3; # Diodes have I_S = (1*10**-13)/3 \n", + "V_BB=2*V_T*math.log((2.83*10**-3)/I_S);\n", + "print round(V_BB,2),\"= V_BB (V) for v_O = 0V\"\n", + "# For v_O=+10V, current through the diodes will decrease to 1mA\n", + "V_BB=2*V_T*math.log((1*10**-3)/I_S);\n", + "print round(V_BB,2),\"= V_BB (V) for v_O = +10V\"\n", + "# For v_O=-10V , Q_N will conduct very small current thus base current is negligible\n", + "# All of the I_BIAS(3mA) flows through the diodes\n", + "V_BB=2*V_T*math.log((3*10**-3)/I_S);\n", + "print round(V_BB,2),\"= V_BB (V) for v_O = -10V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "270.0 = Quiescent power dissipation (mW)\n", + "1.26 = V_BB (V) for v_O = 0V\n", + "1.21 = V_BB (V) for v_O = +10V\n", + "1.26 = V_BB (V) for v_O = -10V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14.3:pg-1248" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Example 14.3 Redesign the output stage of Example 14.2\n", + "V_T=25*10**-3; # (V)\n", + "I_S=10**-14; # (A)\n", + "I_Q=2*10**-3; # Required quiescent current (A)\n", + "# We select I_BIAS=3mA which is divided between I_R and I_C1\n", + "# Thus we select I_R=0.5mA and I_C1=2.5mA\n", + "V_BB=2*V_T*math.log(I_Q/10**-13);\n", + "print round(V_BB,2),\"=V_BB (V)\"\n", + "I_R=0.5*10**-3;\n", + "R1plusR2=V_BB/I_R; # R1plusR2 = R_1+R_2\n", + "I_C1=2.5*10**-3;\n", + "V_BE1=V_T*math.log(I_C1/I_S);\n", + "print round(V_BE1,2),\"= V_BE1 (V)\"\n", + "R_1=V_BE1/I_R;\n", + "print round(R_1/1000,2),\"R_1 (Kohm)\"\n", + "R_2=R1plusR2-R_1;\n", + "print round(R_2/1000,2),\"R_2 (Kohm)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.19 =V_BB (V)\n", + "0.66 = V_BE1 (V)\n", + "1.31 R_1 (Kohm)\n", + "1.06 R_2 (Kohm)\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14.4:pg-1251" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Example 14.4 To determine thermal resistance, junction temperature \n", + "# Consider BJT with following specifications\n", + "P_D0=2; # Maximum power dissipation (W)\n", + "T_A0=25.0; # Ambient temperature (degree celcius)\n", + "T_Jmax=150.0; # maximum junction temperature (degree celcius) \n", + "\n", + "# 14.4a \n", + "theta_JA=(T_Jmax-T_A0)/P_D0; # Thermal resistance\n", + "print theta_JA,\"is The thermal resistance (degree celsius/W)\"\n", + "\n", + "# 14.4b\n", + "T_A=50.0; # (degree celcius)\n", + "P_Dmax=(T_Jmax-T_A)/theta_JA; \n", + "print P_Dmax,\"is Maximum power that can be dissipated at an ambient temperature of 50 degree celsius (W)\"\n", + "\n", + "# 14.4c\n", + "T_A=25.0; # (degree celcius) \n", + "P_D=1; # (W)\n", + "T_J=T_A+theta_JA*P_D;\n", + "print T_J,\"is Junction temperature (degree celcius) if the device is operating at T_A=25 degree celsius and is dissipating 1W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "62.5 is The thermal resistance (degree celsius/W)\n", + "1.6 is Maximum power that can be dissipated at an ambient temperature of 50 degree celsius (W)\n", + "87.5 is Junction temperature (degree celcius) if the device is operating at T_A=25 degree celsius and is dissipating 1W\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex14.5:pg-1253" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Example 14.5 To determine the maximum power dissipated \n", + "# Consider a BJT with following specifications\n", + "T_Jmax=150; # (degree celcius)\n", + "T_A=50; # (degree celcius)\n", + "\n", + "# 14.5a\n", + "theta_JA=62.5; # (degree celcius/W)\n", + "P_Dmax=(T_Jmax-T_A)/theta_JA;\n", + "print round(P_Dmax,2),\"is The maximum power (W) that can be dissipated safely by the transistor when operated in free air\"\n", + "\n", + "#14.5b\n", + "theta_CS=0.5; # (degree celcius/W)\n", + "theta_SA=4; # (degree celcius/W)\n", + "theta_JC=3.12; # (degree celcius/W)\n", + "theta_JA=theta_JC+theta_CS+theta_SA;\n", + "P_Dmax=(T_Jmax-T_A)/theta_JA\n", + "print round(P_Dmax,1),\"is The maximum power (W) that can be dissipated safely by the transistor when operated at an ambient temperature of 50 degree celcius but with a heat sink for which theta_CS= 0.5 (degree celcius/W) and theta_SA = 4 (degree celcius/W) (W)\"\n", + "\n", + "# 14.5c\n", + "theta_CA=0 # since infinite heat sink\n", + "P_Dmax=(T_Jmax-T_A)/theta_JC;\n", + "print round(P_Dmax),\"is The maximum power (W) that can be dissipated safely if an infinite heat sink is used and T_A=50 (degree celcius)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "1.6 is The maximum power (W) that can be dissipated safely by the transistor when operated in free air\n", + "13.1 is The maximum power (W) that can be dissipated safely by the transistor when operated at an ambient temperature of 50 degree celcius but with a heat sink for which theta_CS= 0.5 (degree celcius/W) and theta_SA = 4 (degree celcius/W) (W)\n", + "32.0 is The maximum power (W) that can be dissipated safely if an infinite heat sink is used and T_A=50 (degree celcius)\n" + ] + } + ], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit