From db0855dbeb41ecb8a51dde8587d43e5d7e83620f Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- .../Chapter1.ipynb | 97 ++++ .../Chapter10.ipynb | 556 +++++++++++++++++++++ .../Chapter12.ipynb | 454 +++++++++++++++++ .../Chapter2.ipynb | 151 ++++++ .../Chapter3.ipynb | 503 +++++++++++++++++++ .../Chapter4.ipynb | 370 ++++++++++++++ .../Chapter5.ipynb | 303 +++++++++++ .../Chapter6.ipynb | 308 ++++++++++++ .../Chapter7.ipynb | 288 +++++++++++ .../Chapter8.ipynb | 71 +++ .../Chapter9.ipynb | 276 ++++++++++ 11 files changed, 3377 insertions(+) create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter1.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter12.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter2.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter3.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter4.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter5.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter6.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter7.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter8.ipynb create mode 100755 Materials_Science_by_Dr._M._Arumugam/Chapter9.ipynb (limited to 'Materials_Science_by_Dr._M._Arumugam') diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter1.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter1.ipynb new file mode 100755 index 00000000..223b1028 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter1.ipynb @@ -0,0 +1,97 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#1: Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 1.1, Page number 1.4" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ratio of Al is 37.18 *10**3\n", + "ratio of Mg is 30.9 *10**3\n", + "ratio of steel is 17.69 *10**3\n", + "ratio of glass is 25.55 *10**3\n", + "Aluminium alloy is the best material\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ws_al=103; #working stress of Al\n", + "ws_mg=55; #working stress of Mg\n", + "ws_st=138; #working stress of steel\n", + "ws_g=35; #working stress of glass\n", + "d_al=2770; #density of Al\n", + "d_mg=1780; #density of Mg\n", + "d_st=7800; #density of steel\n", + "d_g=1370; #density of glass\n", + "A=10**6; #area\n", + "l=1; #length\n", + "\n", + "#Calculation\n", + "L_al=ws_al*A; #load of Al\n", + "L_mg=ws_mg*A; #load of Mg\n", + "L_st=ws_st*A; #load of steel\n", + "L_g=ws_g*A; #load of glass\n", + "W_al=d_al*l; #weight of Al\n", + "W_mg=d_mg*l; #weight of Mg\n", + "W_st=d_st*l; #weight of steel\n", + "W_g=d_g*l; #weight of glass\n", + "r_al=L_al/W_al; #ratio of Al\n", + "r_mg=L_mg/W_mg; #ratio of Mg\n", + "r_st=L_st/W_st; #ratio of steel\n", + "r_g=L_g/W_g; #ratio of glass\n", + "\n", + "#Result\n", + "print \"ratio of Al is\",round(r_al/10**3,2),\"*10**3\"\n", + "print \"ratio of Mg is\",round(r_mg/10**3,2),\"*10**3\"\n", + "print \"ratio of steel is\",round(r_st/10**3,2),\"*10**3\"\n", + "print \"ratio of glass is\",round(r_g/10**3,2),\"*10**3\"\n", + "print \"Aluminium alloy is the best material\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb new file mode 100755 index 00000000..bf94717f --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb @@ -0,0 +1,556 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#10: Optical Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.1, Page number 10.61" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of emission is 8628.0 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #plancks constant(J s)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "Eg=1.44*1.6*10**-19; #band gap(J)\n", + "\n", + "#Calculation\n", + "lamda=h*c/Eg; #wavelength of emission(m)\n", + "\n", + "#Result\n", + "print \"wavelength of emission is\",round(lamda*10**10),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.2, Page number 10.61" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "band gap is 0.8 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=1.55; #wavelength(micro m)\n", + "\n", + "#Calculation\n", + "Eg=1.24/lamda; #band gap(eV)\n", + "\n", + "#Result\n", + "print \"band gap is\",Eg,\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.3, Page number 10.61" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of electron-hole pairs is 3.25 *10**5\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "eta=0.65; #quantum efficiency\n", + "n=5*10**5; #number of photons incident\n", + "\n", + "#Calculation\n", + "N=eta*n; #number of electron-hole pairs\n", + "\n", + "#Result\n", + "print \"number of electron-hole pairs is\",N/10**5,\"*10**5\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.4, Page number 10.61" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "responsibility is 0.628 A/W\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "eta=0.6; #quantum efficiency\n", + "q=1.6*10**-19; #charge(coulomb)\n", + "lamda=1.3*10**-6; #lamda(m)\n", + "h=6.625*10**-34; #plancks constant(J s)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "\n", + "#Calculation\n", + "R=eta*q*lamda/(h*c); #responsibility(A/W)\n", + "\n", + "#Result\n", + "print \"responsibility is\",round(R,3),\"A/W\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.5, Page number 10.61" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "multiplication factor is 41\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "eta=0.7; #quantum efficiency\n", + "q=1.6*10**-19; #charge(coulomb)\n", + "lamda=863*10**-9; #lamda(m)\n", + "P0=0.5*10**-6; #optical power(W)\n", + "h=6.625*10**-34; #plancks constant(J s)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "IT=10*10**-6; #current(A)\n", + "\n", + "#Calculation\n", + "IP=eta*q*lamda*P0/(h*c);\n", + "M=IT/IP; #multiplication factor\n", + "\n", + "#Result\n", + "print \"multiplication factor is\",int(M)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.6, Page number 10.62" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical angle is 78.5 degrees\n", + "numerical aperture is 0.3\n", + "acceptance angle is 17.4 degrees\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n2=1.47; #refractive index of cladding\n", + "n1=1.5; #refractive index of core\n", + "\n", + "#Calculation\n", + "phi_c=math.asin(n2/n1); #critical angle(radian)\n", + "phi_c=phi_c*180/math.pi; #critical angle(degrees)\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "phi_max=math.asin(NA); #acceptance angle(radian)\n", + "phi_max=phi_max*180/math.pi; #acceptance angle(degrees)\n", + "\n", + "#Result\n", + "print \"critical angle is\",round(phi_c,1),\"degrees\"\n", + "print \"numerical aperture is\",round(NA,1)\n", + "print \"acceptance angle is\",round(phi_max,1),\"degrees\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.7, Page number 10.62" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total number of guided modes is 490.0\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=50*10**-6; #diameter(m)\n", + "NA=0.2; #numerical aperture(m)\n", + "lamda=1*10**-6; #wavelength(m)\n", + "\n", + "#Calculation\n", + "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", + "\n", + "#Result\n", + "print \"total number of guided modes is\",N" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.8, Page number 10.62" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total number of guided modes is 1\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=5*10**-6; #diameter(m)\n", + "n2=1.447; #refractive index of cladding\n", + "n1=1.45; #refractive index of core\n", + "lamda=1*10**-6; #wavelength(m)\n", + "\n", + "#Calculation\n", + "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n", + "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n", + "\n", + "#Result\n", + "print \"total number of guided modes is\",int(N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.9, Page number 10.63" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numerical aperture is 0.46\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n1=1.46; #refractive index of core\n", + "delta=0.05; #refractive index difference\n", + "\n", + "#Calculation\n", + "NA=n1*math.sqrt(2*delta); #numerical aperture\n", + "\n", + "#Result\n", + "print \"numerical aperture is\",round(NA,2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.10, Page number 10.63" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "V number is 94.72\n", + "maximum number of modes is 4486.0\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=50;\n", + "n2=1.5; #refractive index of cladding\n", + "n1=1.53; #refractive index of core\n", + "lamda0=1; #wavelength(micro m)\n", + "\n", + "#Calculation\n", + "V_number=round(2*math.pi*a*math.sqrt(n1**2-n2**2)/lamda0,2); #V number\n", + "n=V_number**2/2; #maximum number of modes\n", + "\n", + "#Result\n", + "print \"V number is\",V_number\n", + "print \"maximum number of modes is\",round(n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.11, Page number 10.63" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total number of modes is 49178.0\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=100*10**-6;\n", + "NA=0.3; #numerical aperture(m)\n", + "lamda=850*10**-9; #wavelength(m)\n", + "\n", + "#Calculation\n", + "V_number=round(2*math.pi**2*a**2*NA**2/lamda**2); #number of modes\n", + "\n", + "#Result\n", + "print \"total number of modes is\",2*V_number" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.12, Page number 10.63" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cutoff wavelength is 1.315 micro m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=25*10**-6;\n", + "n1=1.48; #refractive index of core\n", + "delta=0.01; #refractive index difference\n", + "V=25; #Vnumber\n", + "\n", + "#Calculation\n", + "lamda=2*math.pi*a*n1*math.sqrt(2*delta)/V; #cutoff wavelength(m)\n", + "\n", + "#Result\n", + "print \"cutoff wavelength is\",round(lamda*10**6,3),\"micro m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 10.13, Page number 10.63" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "maximum value of core radius is 9.95 micro m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=2.405; #Vnumber\n", + "lamda=1.3; #wavelength(micro m)\n", + "NA=0.05; #numerical aperture(m)\n", + "\n", + "#Calculation\n", + "amax=V*lamda/(2*math.pi*NA); #maximum value of core radius(micro m)\n", + "\n", + "#Result\n", + "print \"maximum value of core radius is\",round(amax,2),\"micro m\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter12.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter12.ipynb new file mode 100755 index 00000000..c8688bf4 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter12.ipynb @@ -0,0 +1,454 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#12: Mechanical Behaviour of Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.1, Page number 12.115" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "yield strength is 86.026 kg/mm**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "sigma0=8.55;\n", + "K=2.45; \n", + "sigma=10**-3; #steel size(mm)\n", + "\n", + "#Calculation\n", + "sigma=sigma0+(K/math.sqrt(sigma)); #yield strength\n", + "\n", + "#Result\n", + "print \"yield strength is\",round(sigma,3),\"kg/mm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.2, Page number 12.115" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fracture strength is 0.211 GPa\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=70*10**9; #young's modulus(Pa)\n", + "gama=1; #surface energy(joule/m**2)\n", + "C=1*10**-6; #depth(m)\n", + "\n", + "#Calculation\n", + "sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture strength(GPa)\n", + "\n", + "#Result\n", + "print \"fracture strength is\",round(sigma_f/10**9,3),\"GPa\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.3, Page number 12.116" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ultimate tensile strength is 736.0 MPa\n", + "ductility % of elongation is 10.0 %\n", + "ductility % of reduction is 75.0 %\n", + "modulus of toughness is 49 *10**6 Pa\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ml=57800; #load(N)\n", + "d=10*10**-3; #diameter(m)\n", + "D=5; #diameter after fracture(mm)\n", + "l=50; #guage length(mm)\n", + "L=55; #length after fracture(mm)\n", + "\n", + "#Calculation\n", + "ts=ml/(math.pi*(d/2)**2); #ultimate tensile strength(MPa)\n", + "de=(L-l)*100/l; #ductility % of elongation(%)\n", + "dr=((2*D)**2-D**2)*100/(2*D)**2; #ductility % of reduction(%)\n", + "t=(2/3)*ts*de/100; #modulus of toughness(Pa)\n", + "\n", + "#Result\n", + "print \"ultimate tensile strength is\",round(ts/10**6),\"MPa\"\n", + "print \"ductility % of elongation is\",de,\"%\"\n", + "print \"ductility % of reduction is\",dr,\"%\"\n", + "print \"modulus of toughness is\",int(t/10**6),\"*10**6 Pa\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.4, Page number 12.116" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "elastic strain in 1st case is 0.001\n", + "ratio of elastic and plastic strain in 2nd case is 2.5 %\n", + "ratio of elastic and plastic strain in 3rd case is 1.0 %\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "pl1=206850*10**3; #proportional limit(Pa)\n", + "pl2=310275*10**3; #proportional limit(Pa)\n", + "pl3=413700*10**3; #proportional limit(Pa)\n", + "s2=0.0615; #strain\n", + "s3=0.2020; #strain\n", + "Y=2.0685*10**11; #young's modulus(Pa)\n", + "\n", + "#Calculation\n", + "e1=pl1/Y; #elastic strain in 1st case\n", + "e2=pl2/Y; #elastic strain in 2nd case\n", + "p2=s2-e2; #plastic strain in 2nd case\n", + "r2=e2*100/p2; #ratio of elastic and plastic strain in 2nd case\n", + "e3=pl3/Y; #elastic strain in 2nd case \n", + "p3=s3-e3; #plastic strain in 2nd case \n", + "r3=e3*100/p3; #ratio of elastic and plastic strain in 3rd case\n", + "\n", + "#Result\n", + "print \"elastic strain in 1st case is\",e1\n", + "print \"ratio of elastic and plastic strain in 2nd case is\",r2,\"%\"\n", + "print \"ratio of elastic and plastic strain in 3rd case is\",r3,\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.5, Page number 12.117" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "effective modulus is 738750.0 *10**3 Pa\n", + "cross sectional area is 1.0831 *10**-4 m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "s=12411*10**3; #stress(Pa)\n", + "t=0.0168; #tension\n", + "e=0.127; #elongation(cm)\n", + "l=15.24; #length(cm)\n", + "g=9.8;\n", + "L=68.04; #load(kg)\n", + "\n", + "#Calculation\n", + "E_eff=s/t; #effective modulus(Pa)\n", + "S=e/l; \n", + "W=E_eff*S;\n", + "A=L*g/W; #cross sectional area(m**2)\n", + "\n", + "#Result\n", + "print \"effective modulus is\",E_eff/10**3,\"*10**3 Pa\"\n", + "print \"cross sectional area is\",round(A*10**4,4),\"*10**-4 m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.6, Page number 12.117" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "transition temperature is 229.0 K\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=35*10**10; #youngs modulus(Pa)\n", + "gama=2; #specific surface energy(J/m**2)\n", + "C=2*10**-6; #length(m)\n", + "x=17700; \n", + "y=2.1;\n", + "z=31.25;\n", + "\n", + "#Calculation\n", + "sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture stress(Pa)\n", + "T=x/((sigma_f/(9.8*10**6))-y+z); #transition temperature(K)\n", + "\n", + "#Result\n", + "print \"transition temperature is\",round(T),\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.7, Page number 12.118" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical resolved shear stress is 0.898 MPa\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h1=1;\n", + "h2=1;\n", + "k1=1;\n", + "k2=1;\n", + "l1=1;\n", + "l2=1;\n", + "l3=0;\n", + "s=3.5*10**6; #stress(Pa)\n", + "\n", + "#Calculation\n", + "x=math.sqrt(h1**2+k1**2+l1**2);\n", + "y=math.sqrt(h2**2+k2**2+l2**2);\n", + "z=math.sqrt(h2**2+k2**2+l3**2);\n", + "cos_phi=((h1*h2)-(k1*k2)+(l1*l2))/(x*y);\n", + "sin_phi=math.sqrt(1-(cos_phi)**2);\n", + "cos_theta=((h1*h2)+(k1*k2)+(l1*l3))/(x*z);\n", + "ss=s*cos_theta*cos_phi*sin_phi; #critical resolved shear stress(Pa)\n", + "\n", + "#Result\n", + "print \"critical resolved shear stress is\",round(ss/10**6,3),\"MPa\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.8, Page number 12.119" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "activation energy is 192.393 kJ/mol\n", + "answer varies due to rounding off errors\n", + "diffusion coefficient is 0.394 *10**-4 m**2/s\n", + "diffusivity at 300 C is 11.37 *10**-23 m**2/s\n", + "diffusivity at 700 C is 1.846 *10**-15 m**2/s\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "dz1=4*10**-18; #diffusivity(m**2/s)\n", + "dz2=5*10**-13; #diffusivity(m**2/s)\n", + "T1=773; #temperature(K)\n", + "T2=1273; #temperature(K)\n", + "T3=573; #temperature(K)\n", + "T4=973; #temperature(K)\n", + "\n", + "#Calculation\n", + "x1=round(math.log(dz1),2);\n", + "y1=round(math.log(dz2),3);\n", + "x2=round(-1/(8.314*T1),7);\n", + "y2=round(-1/(8.314*T2),7);\n", + "x=round((x1-y1),3);\n", + "y=round((x2-y2),6);\n", + "Q=x/y; #activation energy(J/mol)\n", + "z=round(y1-(y2*Q),4);\n", + "D0=math.exp(z); #diffusion coefficient(m**2/Vs)\n", + "D1=D0*math.exp(-Q/(8.314*T3)); #diffusivity at 300 C(m**2/s)\n", + "D2=D0*math.exp(-Q/(8.314*T4)); #diffusivity at 700 C(m**2/s)\n", + "\n", + "#Result\n", + "print \"activation energy is\",round(Q/10**3,3),\"kJ/mol\"\n", + "print \"answer varies due to rounding off errors\"\n", + "print \"diffusion coefficient is\",round(D0*10**4,3),\"*10**-4 m**2/s\"\n", + "print \"diffusivity at 300 C is\",round(D1*10**23,2),\"*10**-23 m**2/s\"\n", + "print \"diffusivity at 700 C is\",round(D2*10**15,3),\"*10**-15 m**2/s\"\n", + "print \"answer given in the book is wrong\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 12.9, Page number 12.119" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diffusion is 4.9 *10**-15 m**2/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "D0=0.73*10**-4; #diffusion coefficient(m**2/s)\n", + "Q=170*10**3; #activation energy(J/mol)\n", + "R=8.314; \n", + "T=873; #temperature(K)\n", + "\n", + "#Calculation\n", + "D=D0*math.exp(-Q/(R*T)); #diffusion(m**2/s)\n", + "\n", + "#Result\n", + "print \"diffusion is\",round(D*10**15,1),\"*10**-15 m**2/s\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter2.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter2.ipynb new file mode 100755 index 00000000..aebad8dd --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter2.ipynb @@ -0,0 +1,151 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#2: Chemical Bonds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 2.1, Page number 2.21" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-2*a/r**3 + 90*b/r**11\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "from sympy import *\n", + "import numpy as np\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "m=9;\n", + "a=Symbol('a')\n", + "b=Symbol('b')\n", + "r=Symbol('r')\n", + "\n", + "#Calculation\n", + "y=(-a/(r**n))+(b/(r**m));\n", + "y=diff(y,r);\n", + "y=diff(y,r);\n", + "\n", + "#Result\n", + "print y" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "young's modulus is 157 GPa\n" + ] + } + ], + "source": [ + "#since the values of a,b,r are declared as symbols in the above cell, it cannot be solved there. hence it is being solved here with the given variable declaration\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=7.68*10**-29; \n", + "r0=2.5*10**-10; #radius(m)\n", + "\n", + "#Calculation\n", + "b=a*(r0**8)/9;\n", + "y=((-2*a*r0**8)+(90*b))/r0**11; \n", + "E=y/r0; #young's modulus(Pa)\n", + "\n", + "#Result\n", + "print \"young's modulus is\",int(E/10**9),\"GPa\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 2.2, Page number 2.22" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "effective charge is 0.72 *10**-19 coulomb\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "dm=1.98*(10**-29)*(1/3); #dipole moment\n", + "l=0.92*10**-10; #bond length(m)\n", + "\n", + "#Calculation\n", + "ec=dm/l; #effective charge(coulomb)\n", + "\n", + "#Result\n", + "print \"effective charge is\",round(ec*10**19,2),\"*10**-19 coulomb\"\n", + "print \"answer given in the book is wrong\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter3.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter3.ipynb new file mode 100755 index 00000000..0f0c7e9c --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter3.ipynb @@ -0,0 +1,503 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#3: Elementary Crystallography" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.2, Page number 3.50" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "spacing between (100) plane is 5.64 angstrom\n", + "spacing between (110) plane is 3.99 angstrom\n", + "spacing between (111) plane is 3.26 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=5.64; #lattice constant(angstrom)\n", + "h1=1;\n", + "k1=0;\n", + "l1=0;\n", + "h2=1;\n", + "k2=1;\n", + "l2=0;\n", + "h3=1;\n", + "k3=1;\n", + "l3=1;\n", + "\n", + "#Calculation\n", + "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n", + "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane\n", + "d111=a/math.sqrt(h3**2+k3**2+l3**2); #spacing between (111) plane\n", + "\n", + "#Result\n", + "print \"spacing between (100) plane is\",d100,\"angstrom\"\n", + "print \"spacing between (110) plane is\",round(d110,2),\"angstrom\"\n", + "print \"spacing between (111) plane is\",round(d111,2),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.3, Page number 3.51" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of atoms in (100) is 1.535 *10**13 atoms/mm**2\n", + "number of atoms in (110) is 1.085 *10**13 atoms/mm**2\n", + "number of atoms in (111) is 1.772 *10**13 atoms/mm**2\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=3.61*10**-7; #lattice constant(mm)\n", + "\n", + "#Calculation\n", + "A100=a**2; #surface area(mm**2)\n", + "n=1+(4*(1/4));\n", + "N1=n/A100; #number of atoms in (100)(per mm**2)\n", + "A110=math.sqrt(2)*a**2; #surface area(mm**2)\n", + "N2=n/A110; #number of atoms in (110)(per mm**2)\n", + "A111=math.sqrt(3)*a**2/2; #surface area(mm**2)\n", + "N3=n/A111; #number of atoms in (110)(per mm**2)\n", + "\n", + "#Result\n", + "print \"number of atoms in (100) is\",round(N1/10**13,3),\"*10**13 atoms/mm**2\"\n", + "print \"number of atoms in (110) is\",round(N2/10**13,3),\"*10**13 atoms/mm**2\"\n", + "print \"number of atoms in (111) is\",round(N3/10**13,3),\"*10**13 atoms/mm**2\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "##Example number 3.4, Page number 3.52" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of x rays is 1.552 angstrom\n", + "answer varies due to rounding off errors\n", + "energy of x rays is 8 *10**3 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=4; \n", + "A=107.87; #atomic weight\n", + "rho=10500; #density(kg/m**3)\n", + "N=6.02*10**26; #number of molecules\n", + "theta=19+(12/60); #angle(degrees)\n", + "h=1;\n", + "k=1;\n", + "l=1;\n", + "h0=6.625*10**-34; #planck constant\n", + "c=3*10**8; #velocity of light(m/s)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "\n", + "#Calculation\n", + "theta=theta*math.pi/180; #angle(radian)\n", + "a=(n*A/(N*rho))**(1/3);\n", + "d=a*10**10/math.sqrt(h**2+k**2+l**2); \n", + "lamda=2*d*math.sin(theta); #wavelength of x rays(angstrom)\n", + "E=h0*c/(lamda*10**-10*e); #energy of x rays(eV)\n", + "\n", + "#Result\n", + "print \"wavelength of x rays is\",round(lamda,3),\"angstrom\"\n", + "print \"answer varies due to rounding off errors\"\n", + "print \"energy of x rays is\",int(E/10**3),\"*10**3 eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.5, Page number 3.52" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density is 2332 kg/m**3\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=8; #number of atoms\n", + "r=2.351*10**-10; #bond length(angstrom)\n", + "A=28.09; #Atomic wt. of NaCl\n", + "N=6.02*10**26 #Avagadro number\n", + "\n", + "#Calculation\n", + "a=4*r/math.sqrt(3); \n", + "rho=n*A/(N*a**3); #density(kg/m**3)\n", + "\n", + "#Result\n", + "print \"density is\",int(rho),\"kg/m**3\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "##Example number 3.6, Page number 3.53" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "radius of largest sphere is 0.1547 r\n", + "maximum radius of sphere is 0.414 r\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#Variable declaration\n", + "r=Symbol('r')\n", + "\n", + "#Calculation\n", + "a1=4*r/math.sqrt(3);\n", + "R1=(a1/2)-r; #radius of largest sphere\n", + "a2=4*r/math.sqrt(2);\n", + "R2=(a2/2)-r; #maximum radius of sphere\n", + "\n", + "#Result\n", + "print \"radius of largest sphere is\",round(R1/r,4),\"r\"\n", + "print \"maximum radius of sphere is\",round(R2/r,3),\"r\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.7, Page number 3.54" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "percent volume change is 0.5 %\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "r1=1.258*10**-10; #radius(m)\n", + "r2=1.292*10**-10; #radius(m)\n", + "\n", + "#Calculation\n", + "a_bcc=4*r1/math.sqrt(3);\n", + "v=a_bcc**3;\n", + "V1=v/2;\n", + "a_fcc=2*math.sqrt(2)*r2;\n", + "V2=a_fcc**3/4;\n", + "V=(V1-V2)*100/V1; #percent volume change is\",V,\"%\"\n", + "\n", + "#Result\n", + "print \"percent volume change is\",round(V,1),\"%\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.8, Page number 3.55" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of vacancies at 0K is 0 per mol\n", + "number of vacancies at 300K is 768.0 per mol\n", + "number of vacancies at 900K is 6.53 *10**16 per mol\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "delta_Hf=120*10**3; \n", + "T1=0; #temperature(K)\n", + "T2=300; #temperature(K)\n", + "n1=0;\n", + "N=6.022*10**23;\n", + "R=8.314;\n", + "T3=900; #temperature(K)\n", + "\n", + "#Calculation\n", + "n2=N*math.exp(-delta_Hf/(R*T2)); #number of vacancies at 300K(per mol)\n", + "n3=N*math.exp(-delta_Hf/(R*T3)); #number of vacancies at 900K(per mol)\n", + "\n", + "#Result\n", + "print \"number of vacancies at 0K is\",n1,\"per mol\"\n", + "print \"number of vacancies at 300K is\",round(n2),\"per mol\"\n", + "print \"number of vacancies at 900K is\",round(n3/10**16,2),\"*10**16 per mol\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.9, Page number 3.56" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interplanar spacing of crystal is 1.824 angstrom\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "theta1=6.45; #angle(degrees)\n", + "theta2=9.15; #angle(degrees)\n", + "theta3=13; #angle(degrees)\n", + "lamda=0.58; #wavelength(angstrom)\n", + "\n", + "#Calculation\n", + "theta1=theta1*math.pi/180; #angle(radian)\n", + "theta2=theta2*math.pi/180; #angle(radian)\n", + "theta3=theta3*math.pi/180; #angle(radian)\n", + "d=lamda/(2*math.sin(theta2)); #interplanar spacing of crystal(angstrom)\n", + "\n", + "#Result\n", + "print \"interplanar spacing of crystal is \",round(d,3),\"angstrom\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.10, Page number 3.56" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lattice parameter of lead is 4.1 *10**-10 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1; #order of diffraction\n", + "lamda=1.54*10**-10; #wavelength(m)\n", + "theta=32; #angle(degrees)\n", + "h=2;\n", + "k=2;\n", + "l=0;\n", + "\n", + "#Calculation\n", + "theta=theta*math.pi/180; #angle(radian)\n", + "d=n*lamda/(2*math.sin(theta));\n", + "a=d*math.sqrt(h**2+k**2+l**2); #lattice parameter of lead(m)\n", + "\n", + "#Result\n", + "print \"lattice parameter of lead is\",round(a*10**10,1),\"*10**-10 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 3.11, Page number 3.57" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amount of climb down is 0.36915 *10**-8 cm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "delta_Hf=1.6*10**-19; \n", + "T=500; #temperature(K)\n", + "N=6.026*10**23;\n", + "k=1.38*10**-23; #boltzmann constant\n", + "mv=5.55; #molar volume(cm**3)\n", + "ne=10**6; #number of edge dislocations(per cm**3)\n", + "v=5*10**7; #number of vacancies\n", + "a=2*10**-8; #lattice parameter(cm)\n", + "\n", + "#Calculation\n", + "n=(N/mv)*math.exp(-delta_Hf/(k*T)); #number of vacancies at 300K(per mol)\n", + "ac=n*a/(v*ne); #amount of climb down(cm)\n", + "\n", + "#Result\n", + "print \"amount of climb down is\",round(ac*10**8,5),\"*10**-8 cm\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter4.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter4.ipynb new file mode 100755 index 00000000..8da77cca --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter4.ipynb @@ -0,0 +1,370 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#4: Electron Theory of Solids" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.1, Page number 4.57" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "de broglie wavelength is 0.00286 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=10**4*1.6*10**-19; #kinetic energy(J)\n", + "m=1.675*10**-27; #mass(kg)\n", + "h=6.625*10**-34; #planck's constant\n", + "\n", + "#Calculation\n", + "v=math.sqrt(2*E/m); #velocity(m/s)\n", + "lamda=h/(m*v); #de broglie wavelength(m)\n", + "\n", + "#Result\n", + "print \"de broglie wavelength is\",round(lamda*10**10,5),\"angstrom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.2, Page number 4.58" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy difference is 1.81 *10**-37 J\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass(kg)\n", + "nx=ny=nz=1;\n", + "n=6;\n", + "a=1; #edge(m)\n", + "h=6.63*10**-34; #planck's constant\n", + "\n", + "#Calculation\n", + "E1=h**2*(nx**2+ny**2+nz**2)/(8*m*a**2);\n", + "E2=h**2*n/(8*m*a**2);\n", + "E=E2-E1; #energy difference(J)\n", + "\n", + "#Result\n", + "print \"energy difference is\",round(E*10**37,2),\"*10**-37 J\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.3, Page number 4.58" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temperature is 1261 K\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "y=1/100; #percentage of probability\n", + "x=0.5*1.6*10**-19; #energy(J)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "xbykT=math.log((1/y)-1);\n", + "T=x/(k*xbykT); #temperature(K)\n", + "\n", + "#Result\n", + "print \"temperature is\",int(T),\"K\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.4, Page number 4.58" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fermi energy is 3.15 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=970; #density(kg/m**3)\n", + "Na=6.02*10**26; #avagadro number\n", + "w=23; #atomic weight\n", + "m=9.1*10**-31; #mass(kg)\n", + "h=6.62*10**-34; #planck's constant\n", + "\n", + "#Calculation\n", + "N=d*Na/w; #number of atoms/m**3\n", + "x=h**2/(8*m);\n", + "y=(3*N/math.pi)**(2/3);\n", + "EF=x*y; #fermi energy(J)\n", + "\n", + "#Result\n", + "print \"fermi energy is\",round(EF/(1.6*10**-19),2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.5, Page number 4.59" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "work function is 4.14 eV\n", + "maximum kinetic energy is 0.758 eV\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.625*10**-34; #planck's constant\n", + "c=3*10**8; #velocity of light(m/s)\n", + "lamda0=3000*10**-10; #wavelength(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "lamda=2536*10**-10; #wavelength(m)\n", + "\n", + "#Calculation\n", + "hf0=c*h/(lamda0*e); #work function(eV)\n", + "E=c*h*((1/lamda)-(1/lamda0))/e; #maximum kinetic energy(eV)\n", + "\n", + "#Result\n", + "print \"work function is\",round(hf0,2),\"eV\"\n", + "print \"maximum kinetic energy is\",round(E,3),\"eV\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.6, Page number 4.59" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lowest energy of neutron is 2.05 MeV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "n=1;\n", + "hbar=1.054*10**-34; \n", + "m=1.67*10**-27; #mass of neutron(kg)\n", + "a=10**-14; #size(m)\n", + "\n", + "#Calculation\n", + "E=n**2*math.pi**2*hbar**2/(2*m*a**2); #lowest energy of neutron(J)\n", + "\n", + "#Result\n", + "print \"lowest energy of neutron is\",round(E/(1.6*10**-13),2),\"MeV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.7, Page number 4.59" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "probability of particle is 0.0158\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "from scipy.integrate import quad\n", + "\n", + "#Variable declaration\n", + "k=1;\n", + "\n", + "#Calculation\n", + "def zintg(x):\n", + "\treturn math.exp(-2*k*x)\n", + "\n", + "a=quad(zintg,2/k,3/k)[0]; #probability of particle\n", + "\n", + "#Result\n", + "print \"probability of particle is\",round(2*a,4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 4.8, Page number 4.60" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "voltage appeared is 1.83 mV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "i=10**-2; #current(ampere)\n", + "A=0.01*0.001; #area(m**2)\n", + "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n", + "Bz=0.5; #magnetic induction(weber/m**2)\n", + "\n", + "#Calculation\n", + "Jx=i/A; \n", + "Ey=RH*Bz*Jx; \n", + "Vy=Ey*i; #voltage appeared(V)\n", + "\n", + "#Result\n", + "print \"voltage appeared is\",Vy*10**3,\"mV\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter5.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter5.ipynb new file mode 100755 index 00000000..2e530c83 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter5.ipynb @@ -0,0 +1,303 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#5: Conducting Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.1, Page number 5.34" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "drift speed is 36.6 *10**-5 m/s\n", + "mean free path is 3.34 *10**-8 m\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Na=6.023*10**26; #avagadro number\n", + "e=1.602*10**-19;\n", + "d=8960; #density\n", + "N=1; #number of free electrons\n", + "w=63.54; #atomic weight\n", + "i=10; #current(ampere)\n", + "m=9.1*10**-31; \n", + "rho=2*10**-8; #resistivity(ohm m)\n", + "r=0.08*10**-2; #radius(m)\n", + "c=1.6*10**6; #mean thermal velocity(m/s)\n", + "\n", + "#Calculation\n", + "A=math.pi*r**2; #area(m**2)\n", + "n=Na*d*N/w;\n", + "vd=i/(A*n*e); #drift speed(m/s)\n", + "tow_c=m/(n*e**2*rho);\n", + "lamda=tow_c*c; #mean free path(m)\n", + "\n", + "#Result\n", + "print \"drift speed is\",round(vd*10**5,1),\"*10**-5 m/s\"\n", + "print \"mean free path is\",round(lamda*10**8,2),\"*10**-8 m\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.2, Page number 5.35" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electrical conductivity is 4.8 *10**7 ohm-1 m-1\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.602*10**-19;\n", + "m=9.1*10**-31; #mass(kg)\n", + "tow=2*10**-14; #time(s)\n", + "n=8.5*10**28; \n", + "\n", + "#Calculation\n", + "sigma=n*e**2*tow/m; #electrical conductivity(ohm-1 m-1)\n", + "\n", + "#Result\n", + "print \"electrical conductivity is\",round(sigma/10**7,1),\"*10**7 ohm-1 m-1\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.3, Page number 5.35" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relaxation time is 4.0 *10**-14 s\n", + "mobility of electrons is 7.0 *10**-3 m**2/Vs\n", + "drift velocity is 0.7 m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19;\n", + "m=9.1*10**-31; #mass(kg)\n", + "n=5.8*10**28; \n", + "rho=1.54*10**-8; #resistivity(ohm m)\n", + "E=1*10**2;\n", + "\n", + "#Calculation\n", + "tow=m/(rho*n*e**2); #relaxation time(s)\n", + "mew_e=1/(rho*e*n); #mobility of electrons(m**2/Vs)\n", + "vd=mew_e*E; #drift velocity(m/s)\n", + "\n", + "#Result\n", + "print \"relaxation time is\",round(tow*10**14),\"*10**-14 s\"\n", + "print \"mobility of electrons is\",round(mew_e*10**3),\"*10**-3 m**2/Vs\"\n", + "print \"drift velocity is\",round(vd,1),\"m/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.4, Page number 5.35" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistivity is 5.51 *10**-8 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=1.7*10**-8; #resistivity(ohm m)\n", + "T=300; #temperature(K)\n", + "T1=973; #temperature(K)\n", + "\n", + "#Calculation\n", + "a=rho/T; \n", + "rho_973=a*T1; #resistivity(ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rho_973*10**8,2),\"*10**-8 ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.5, Page number 5.36" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "increase of resistivity is 0.54 *10**-8 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho1=1.2*10**-8; #resistivity(ohm m)\n", + "rho2=0.12*10**-8; #resistivity(ohm m)\n", + "p1=0.4; #atomic percent\n", + "p2=0.5; #atomic percent\n", + "rho=1.5*10**-8; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "rho_i=(rho1*p1)+(rho2*p2); #increase of resistivity(ohm m)\n", + "Tr=rho+rho_i; #total resistivity of copper alloy(ohm m)\n", + "\n", + "#Result\n", + "print \"increase of resistivity is\",round(rho_i*10**8,2),\"*10**-8 ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.6, Page number 5.36" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "electrical conductivity is 1.688 *10**7 ohm-1 m-1\n", + "thermal conductivity is 123.93 W/m/K\n", + "lorentz number is 2.447 *10**-8 watt ohm K-2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19;\n", + "m=9.1*10**-31; #mass(kg)\n", + "n=6*10**28; #density(per m**3)\n", + "tow=10**-14; #relaxation time(s)\n", + "T=300; #temperature(K)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "sigma=n*e**2*tow/m; #electrical conductivity(ohm-1 m-1)\n", + "K=n*math.pi**2*k**2*T*tow/(3*m); #thermal conductivity(W/m/K)\n", + "L=K/(sigma*T); #lorentz number(watt ohm K-2)\n", + "\n", + "#Result\n", + "print \"electrical conductivity is\",round(sigma/10**7,3),\"*10**7 ohm-1 m-1\"\n", + "print \"thermal conductivity is\",round(K,2),\"W/m/K\"\n", + "print \"lorentz number is\",round(L*10**8,3),\"*10**-8 watt ohm K-2\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter6.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter6.ipynb new file mode 100755 index 00000000..8da69c01 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter6.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#6: Dielectric Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.1, Page number 6.34" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "insulation resistance is 0.85 *10**18 ohm\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=5*10**16; #resistivity(ohm m)\n", + "l=5*10**-2; #thickness(m)\n", + "b=8*10**-2; #length(m)\n", + "w=3*10**-2; #width(m)\n", + "\n", + "#Calculation\n", + "A=b*w; #area(m**2)\n", + "Rv=rho*l/A; \n", + "X=l+b; #length(m)\n", + "Y=w; #perpendicular(m)\n", + "Rs=Rv*X/Y; \n", + "Ri=Rs*Rv/(Rs+Rv); #insulation resistance(ohm)\n", + "\n", + "#Result\n", + "print \"insulation resistance is\",round(Ri/10**18,2),\"*10**18 ohm\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.2, Page number 6.34" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DC dielectric loss is 1 *10**-3 watt\n", + "AC dielectric loss is 22.22 *10**-3 watt\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=10**10; #resistivity(ohm m)\n", + "d=10**-3; #thickness(m)\n", + "A=10**4*10**-6; #area(m**2)\n", + "V=10**3; #voltage(V)\n", + "f=50; #power frequency(Hz)\n", + "epsilonr=8;\n", + "epsilon0=8.84*10**-12;\n", + "tan_delta=0.1;\n", + "\n", + "#Calculation\n", + "Rv=rho*d/A; \n", + "dl_DC=V**2/Rv; #DC dielectric loss(watt)\n", + "C=A*epsilon0*epsilonr/d;\n", + "dl_AC=V**2*2*math.pi*f*C*tan_delta; #AC dielectric loss(watt)\n", + "\n", + "#Result\n", + "print \"DC dielectric loss is\",int(dl_DC*10**3),\"*10**-3 watt\"\n", + "print \"AC dielectric loss is\",round(dl_AC*10**3,2),\"*10**-3 watt\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.3, Page number 6.35" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "polarisability of He is 0.185 *10**-40 farad m**2\n", + "relative permittivity is 1.000056\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilon0=8.84*10**-12;\n", + "R=0.55*10**-10; #radius(m)\n", + "N=2.7*10**25; #number of atoms\n", + "\n", + "#Calculation\n", + "alpha_e=4*math.pi*epsilon0*R**3; #polarisability of He(farad m**2)\n", + "epsilonr=1+(N*alpha_e/epsilon0); #relative permittivity\n", + "\n", + "#Result\n", + "print \"polarisability of He is\",round(alpha_e*10**40,3),\"*10**-40 farad m**2\"\n", + "print \"relative permittivity is\",round(epsilonr,6)\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.4, Page number 6.35" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "field strength is 3.535 *10**7 V/m\n", + "total dipole moment is 33.4 *10**-12 Cm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=360*10**-4; #area(m**2)\n", + "V=15; #voltage(V)\n", + "C=6*10**-6; #capacitance(farad)\n", + "epsilonr=8;\n", + "epsilon0=8.84*10**-12;\n", + "\n", + "#Calculation\n", + "E=V*C/(epsilon0*epsilonr*A); #field strength(V/m)\n", + "dm=epsilon0*(epsilonr-1)*V*A; #total dipole moment(Cm)\n", + "\n", + "#Result\n", + "print \"field strength is\",round(E/10**7,3),\"*10**7 V/m\"\n", + "print \"total dipole moment is\",round(dm*10**12,1),\"*10**-12 Cm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.5, Page number 6.36" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "capacitance is 226.3 *10**-12 farad\n", + "parallel loss resistance is 10 mega ohm\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=0.08*10**-3; #thickness(m)\n", + "A=8*10**-4; #area(m**2)\n", + "epsilonr=2.56;\n", + "epsilon0=8.84*10**-12;\n", + "tan_delta=0.7*10**-4;\n", + "new=10**6; #frequency(Hz)\n", + "\n", + "#Calculation\n", + "C=A*epsilon0*epsilonr/d; #capacitance(farad)\n", + "epsilonrdash=tan_delta*epsilonr;\n", + "omega=2*math.pi*new;\n", + "R=d/(epsilon0*epsilonrdash*omega*A); #parallel loss resistance(ohm)\n", + "\n", + "#Result\n", + "print \"capacitance is\",round(C*10**12,1),\"*10**-12 farad\"\n", + "print \"parallel loss resistance is\",int(R/10**6),\"mega ohm\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 6.6, Page number 6.36" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the complex polarizability is (3.50379335033-0.0600074383321j) *10**-40 F-m**2\n", + "answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex cant be converted to float\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "epsilonr=4.36; #dielectric constant\n", + "t=2.8*10**-2; #loss tangent(t)\n", + "N=4*10**28; #number of electrons\n", + "epsilon0=8.84*10**-12; \n", + "\n", + "#Calculation\n", + "epsilon_r = epsilonr*t;\n", + "epsilonstar = (complex(epsilonr,-epsilon_r));\n", + "alphastar = (epsilonstar-1)/(epsilonstar+2);\n", + "alpha_star = 3*epsilon0*alphastar/N; #complex polarizability(Fm**2)\n", + "\n", + "#Result\n", + "print \"the complex polarizability is\",alpha_star*10**40,\"*10**-40 F-m**2\"\n", + "print \"answer cant be rouned off to 2 decimals as given in the textbook. Since it is a complex number and complex cant be converted to float\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter7.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter7.ipynb new file mode 100755 index 00000000..df8d9205 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter7.ipynb @@ -0,0 +1,288 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#7: Magnetic Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.1, Page number 7.36" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temperature rise is 8.43 K\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "El=10**-2*50; #energy loss(J)\n", + "H=El*60; #heat produced(J)\n", + "d=7.7*10**3; #iron rod(kg/m**3)\n", + "s=0.462*10**-3; #specific heat(J/kg K)\n", + "\n", + "#Calculation\n", + "theta=H/(d*s); #temperature rise(K)\n", + "\n", + "#Result\n", + "print \"temperature rise is\",round(theta,2),\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.2, Page number 7.36" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetic field at the centre is 14.0 weber/m**2\n", + "dipole moment is 9.0 *10**-24 ampere/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "new=6.8*10**15; #frequency(revolutions per second)\n", + "mew0=4*math.pi*10**-7;\n", + "R=5.1*10**-11; #radius(m)\n", + "\n", + "#Calculation\n", + "i=round(e*new,4); #current(ampere)\n", + "B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)\n", + "A=math.pi*R**2;\n", + "d=i*A; #dipole moment(ampere/m**2)\n", + "\n", + "#Result\n", + "print \"magnetic field at the centre is\",round(B),\"weber/m**2\"\n", + "print \"dipole moment is\",round(d*10**24),\"*10**-24 ampere/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.3, Page number 7.36" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intensity of magnetisation is 5.0 ampere/m\n", + "flux density in material is 1.257 weber/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi=0.5*10**-5; #magnetic susceptibility\n", + "H=10**6; #field strength(ampere/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "I=chi*H; #intensity of magnetisation(ampere/m)\n", + "B=mew0*(I+H); #flux density in material(weber/m**2)\n", + "\n", + "#Result\n", + "print \"intensity of magnetisation is\",I,\"ampere/m\"\n", + "print \"flux density in material is\",round(B,3),\"weber/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.4, Page number 7.36" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of Bohr magnetons is 2.22 bohr magneon/atom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "B=9.27*10**-24; #bohr magneton(ampere m**2)\n", + "a=2.86*10**-10; #edge(m)\n", + "Is=1.76*10**6; #saturation value of magnetisation(ampere/m)\n", + "\n", + "#Calculation\n", + "N=2/a**3;\n", + "mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)\n", + "mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)\n", + "\n", + "#Result\n", + "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.5, Page number 7.37" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew0=4*math.pi*10**-7;\n", + "H=9.27*10**-24; #bohr magneton(ampere m**2)\n", + "beta=10**6; #field(ampere/m)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "T=303; #temperature(K)\n", + "\n", + "#Calculation\n", + "mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)\n", + "\n", + "#Result\n", + "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 7.6, Page number 7.37" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hysteresis loss per cycle is 188.0 J/m**3\n", + "hysteresis loss per second is 9400.0 watt/m**3\n", + "power loss is 1.23 watt/kg\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=94; #area(m**2)\n", + "vy=0.1; #value of length(weber/m**2)\n", + "vx=20; #value of unit length\n", + "n=50; #number of magnetization cycles\n", + "d=7650; #density(kg/m**3)\n", + "\n", + "#Calculation\n", + "h=A*vy*vx; #hysteresis loss per cycle(J/m**3)\n", + "hs=h*n; #hysteresis loss per second(watt/m**3)\n", + "pl=hs/d; #power loss(watt/kg)\n", + "\n", + "#Result\n", + "print \"hysteresis loss per cycle is\",h,\"J/m**3\"\n", + "print \"hysteresis loss per second is\",hs,\"watt/m**3\"\n", + "print \"power loss is\",round(pl,2),\"watt/kg\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter8.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter8.ipynb new file mode 100755 index 00000000..5b490a55 --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter8.ipynb @@ -0,0 +1,71 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#8: Superconducting Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 8.2, Page number 8.16" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical field is 33.64 *10**3 ampere/m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "H0=64*10**3; #initial field(ampere/m)\n", + "T=5; #temperature(K)\n", + "Tc=7.26; #transition temperature(K)\n", + "\n", + "#Calculation\n", + "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n", + "\n", + "#Result\n", + "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter9.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter9.ipynb new file mode 100755 index 00000000..2a72be5d --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter9.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#9: Semiconducting Materials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 9.1, Page number 9.23" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of electron hole pairs is 2.32 *10**16 per cubic metre\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ni1=2.5*10**19; #number of electron hole pairs\n", + "T1=300; #temperature(K)\n", + "Eg1=0.72*1.6*10**-19; #energy gap(J)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "T2=310; #temperature(K)\n", + "Eg2=1.12*1.6*10**-19; #energy gap(J)\n", + "\n", + "#Calculation\n", + "x1=-Eg1/(2*k*T1);\n", + "y1=(T1**(3/2))*math.exp(x1);\n", + "x2=-Eg2/(2*k*T2);\n", + "y2=(T2**(3/2))*math.exp(x2);\n", + "ni=ni1*(y2/y1); #number of electron hole pairs\n", + "\n", + "#Result\n", + "print \"number of electron hole pairs is\",round(ni/10**16,2),\"*10**16 per cubic metre\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 9.2, Page number 9.24" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intrinsic conductivity is 1.434 *10**4 ohm-1 m-1\n", + "intrinsic resistivity is 0.697 *10**-4 ohm m\n", + "answer varies due to rounding off errors\n", + "number of germanium atoms per m**3 is 4.5 *10**28\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "w=72.6; #atomic weight\n", + "d=5400; #density(kg/m**3)\n", + "Na=6.025*10**26; #avagadro number\n", + "mew_e=0.4; #mobility of electron(m**2/Vs)\n", + "mew_h=0.2; #mobility of holes(m**2/Vs)\n", + "e=1.6*10**-19;\n", + "m=9.108*10**-31; #mass(kg)\n", + "ni=2.1*10**19; #number of electron hole pairs\n", + "Eg=0.7; #band gap(eV)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "h=6.625*10**-34; #plancks constant\n", + "T=300; #temperature(K)\n", + "\n", + "#Calculation\n", + "sigmab=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", + "rhob=1/sigmab; #resistivity(ohm m)\n", + "n=Na*d/w; #number of germanium atoms per m**3\n", + "p=n/10**5; #boron density\n", + "sigma=p*e*mew_h;\n", + "rho=1/sigma;\n", + "\n", + "#Result\n", + "print \"intrinsic conductivity is\",round(sigma/10**4,3),\"*10**4 ohm-1 m-1\"\n", + "print \"intrinsic resistivity is\",round(rho*10**4,3),\"*10**-4 ohm m\"\n", + "print \"answer varies due to rounding off errors\"\n", + "print \"number of germanium atoms per m**3 is\",round(n/10**28,1),\"*10**28\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 9.3, Page number 9.25" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "charge carrier density is 2 *10**22 per m**3\n", + "electron mobility is 0.035 m**2/Vs\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19;\n", + "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n", + "sigma=112; #conductivity(ohm-1 m-1)\n", + "\n", + "#Calculation\n", + "ne=3*math.pi/(8*RH*e); #charge carrier density(per m**3)\n", + "mew_e=sigma/(e*ne); #electron mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"charge carrier density is\",int(ne/10**22),\"*10**22 per m**3\"\n", + "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 9.4, Page number 9.25" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intrinsic conductivity is 0.432 *10**-3 ohm-1 m-1 10.4\n", + "conductivity during donor impurity is 10.4 ohm-1 m-1\n", + "conductivity during acceptor impurity is 4 ohm-1 m-1\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew_e=0.13; #mobility of electron(m**2/Vs)\n", + "mew_h=0.05; #mobility of holes(m**2/Vs)\n", + "e=1.6*10**-19;\n", + "ni=1.5*10**16; #number of electron hole pairs\n", + "N=5*10**28;\n", + "\n", + "#Calculation\n", + "sigma1=ni*e*(mew_e+mew_h); #intrinsic conductivity(ohm-1 m-1)\n", + "ND=N/10**8;\n", + "n=ni**2/ND;\n", + "sigma2=ND*e*mew_e; #conductivity(ohm-1 m-1)\n", + "sigma3=ND*e*mew_h; #conductivity(ohm-1 m-1)\n", + "\n", + "#Result\n", + "print \"intrinsic conductivity is\",round(sigma1*10**3,3),\"*10**-3 ohm-1 m-1\",sigma2\n", + "print \"conductivity during donor impurity is\",sigma2,\"ohm-1 m-1\"\n", + "print \"conductivity during acceptor impurity is\",int(sigma3),\"ohm-1 m-1\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 9.5, Page number 9.26" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "conductivity is 4.97 mho m-1\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19;\n", + "Eg=0.72; #band gap(eV)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "T1=293; #temperature(K)\n", + "T2=313; #temperature(K)\n", + "sigma1=2; #conductivity(mho m-1)\n", + "\n", + "#Calculation\n", + "x=(Eg*e/(2*k))*((1/T1)-(1/T2));\n", + "y=round(x/2.303,3);\n", + "z=round(math.log10(sigma1),3);\n", + "log_sigma2=y+z;\n", + "sigma2=10**log_sigma2; #conductivity(mho m-1)\n", + "\n", + "#Result\n", + "print \"conductivity is\",round(sigma2,2),\"mho m-1\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit