From 64d949698432e05f2a372d9edc859c5b9df1f438 Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:40:35 +0530 Subject: Revised list of TBCs --- Materials_Science/Chapter02.ipynb | 328 -------------------------------------- 1 file changed, 328 deletions(-) delete mode 100755 Materials_Science/Chapter02.ipynb (limited to 'Materials_Science/Chapter02.ipynb') diff --git a/Materials_Science/Chapter02.ipynb b/Materials_Science/Chapter02.ipynb deleted file mode 100755 index e709048c..00000000 --- a/Materials_Science/Chapter02.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:dd88e5202fe8cb4f62cee212896e4620a6a485517d90fb3c0293ab4baa871eef" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter02: Structure of atoms" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.1:pg-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.1 : radius of the first bohr\"s orbit \n", - " \n", - "#given data :\n", - "\n", - "ep=8.854*10**-12;#\n", - "h=6.626*10**-34;#\n", - "m=9.1*10**-31;#in Kg\n", - "e=1.602*10**-19;#\n", - "r1=((ep*(h**2))/((math.pi*m*(e**2))));#\n", - "print round(r1*10**10,2),\"is radius,r1(in angstrom) \"\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "0.53 is radius,r1(in angstrom) \n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.2:pg-12" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "#Example 2.2 : radius of the second bohr\"s orbit \n", - " \n", - "#given data :\n", - "\n", - "r1_h=0.529; # radius for hydrozen atom in Angstrum\n", - "n1=1;# for the first bohr's orbit of electron in hydrozen atom\n", - "Z1=1; # for the first bohr's orbit of electron in hydrozen atom\n", - "k=(r1_h*Z1)/n1**2; # where k is constant\n", - "n2=2; # for the second bohr orbit\n", - "Z2=2; #for the second bohr orbit\n", - "r2_he=k*(n2**2/Z2);\n", - "print r2_he,\" is radius of the second bohr orbit,r2 in (Angstrom) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1.058 is radius of the second bohr orbit,r2 in (Angstrom) \n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.3:pg-13" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Example 2.3: to prove\n", - " \n", - "Z=1;#assume\n", - "n1=1;#orbit 1\n", - "n2=2;#orbit 2\n", - "n3=3;#orbit 3\n", - "e1=((-13.6*Z)/(n1**2));#energy for the first orbit\n", - "e2=((-13.6*Z)/(n2**2));#energy for the second orbit\n", - "e3=((-13.6*Z)/(n3**2));#energy for the third orbit\n", - "e31=e3-e1;#energy emitted by an electron jumping from orbit nuber 3 to orbit nimber 1\n", - "e21=e2-e1;#energy emitted by an electron jumping from orbit nuber 2 to orbit nimber 1\n", - "re=e31/e21;#ratio of energy\n", - "print re,\" is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \\n hence proved\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1.18518518519 is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \n", - " hence proved\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.4:pg-13" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.4 : velocity\n", - " \n", - "#given data :\n", - "\n", - "h=6.626*10**-34;\n", - "e=1.6*10**-19;\n", - "epsilon_o=8.825*10**-12;\n", - "n=1;\n", - "Z=1;\n", - "vn=(Z*e**2)/(2*epsilon_o*n*h);\n", - "print vn,\" is velocity,vn in (m/s) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "2188990.2342 is velocity,vn in (m/s) \n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.5:pg-14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.5 : velocity\n", - " \n", - "#given data :\n", - "n=1;\n", - "Z=1;\n", - "k=6.56*10**15; # k is constant\n", - "fn=k*(Z**2/n**3);\n", - "print fn,\" is orbital frequency,fn in (Hz) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "6.56e+15 is orbital frequency,fn in (Hz) \n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.6.a:pg-14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.6.a : the energy of the photon emitted\n", - " \n", - "#given data :\n", - "Z=1;#for hydrozen\n", - "n1=3;\n", - "n2=2;\n", - "E3=-(13.6*Z**2)/n1**2;\n", - "E2=-(13.6*Z**2)/n2**2;\n", - "del_E=E3-E2;\n", - "print round(del_E,2),\" is the energy of photon emitted, del_E in (eV) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "1.89 is the energy of photon emitted, del_E in (eV) \n" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.6.b:pg-14" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.6.b : frequency\n", - " \n", - "#given data :\n", - "\n", - "Z=1;#for hydrozen\n", - "n1=3;\n", - "n2=2;\n", - "m=6.626*10**-34;# mass of electron in kg\n", - "E3=-(13.6*Z**2)/n1**2;\n", - "E2=-(13.6*Z**2)/n2**2;\n", - "del_E=E3-E2;\n", - "E=del_E*1.6*10**-19;# in joules\n", - "v=(E/m);\n", - "print round(v,2),\"frequency of the photon emitted,v(Hz) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "4.5611563873e+14 frequency of the photon emitted,v(Hz) \n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Ex2.6.c:pg-15" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Example 2.6.c : wave length of the photon emitted\n", - " \n", - "#given data :\n", - "\n", - "Z=1;#for hydrozen\n", - "n1=3;\n", - "n2=2;\n", - "m=6.626*10**-34;# mass of electron in kg\n", - "C=3*10**8;\n", - "E3=-(13.6*Z**2)/n1**2;\n", - "E2=-(13.6*Z**2)/n2**2;\n", - "del_E=E3-E2;\n", - "E=del_E*1.6*10**-19;\n", - "v=E/m;\n", - "lamda=C/v;\n", - "print round(lamda,9),\" is wavelength of the photon emitted,(m) \"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "6.58e-07 is wavelength of the photon emitted,(m) \n" - ] - } - ], - "prompt_number": 4 - } - ], - "metadata": {} - } - ] -} \ No newline at end of file -- cgit