From d20e1b0ee7fd843cc93c28b41b1240ae0b0b417f Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Sun, 6 Nov 2016 23:30:47 +0600 Subject: Added(A)/Deleted(D) following books A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter10_kPcQV7Z.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter11_fAZhMdq.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter2_Uky3L9B.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter3_88A9J18.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter4_lSvpbll.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter5_An3Ftbq.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter6_WrH8REw.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter7_myr7YPo.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter8_vQlQmPK.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_MlExdPk.ipynb A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch.png A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch1.png A MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/screenshots/ch_9.png --- .../Chapter1_gyz58mt.ipynb | 373 +++++++++++++++++++++ 1 file changed, 373 insertions(+) create mode 100644 MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb (limited to 'MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb') diff --git a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb new file mode 100644 index 00000000..080cbafb --- /dev/null +++ b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_gyz58mt.ipynb @@ -0,0 +1,373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1-INTRODUCTION TO MECHANICS OF SOLIDS " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example1.1 Page number 10\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The resultant velocity : 21.54 km/hour\n", + "68.2 °\n" + ] + } + ], + "source": [ + "#downstream direction as x\n", + "#direction across river as y\n", + "\n", + "from math import sqrt,atan,pi\n", + "\n", + "#variable declaration\n", + "\n", + "Vx= 8 #velocity of stream, km/hour\n", + "Vy=float(20) #velocity of boat,km/hour\n", + "\n", + "V=sqrt(pow(Vx,2)+pow(Vy,2)) #resultant velocity, km/hour\n", + "theta=Vy/Vx\n", + "\n", + "alpha= atan(theta)*180/pi #angle, degrees \n", + "\n", + "print \" The resultant velocity :\",round(V,2),\"km/hour\"\n", + "print round(alpha,2),\"°\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.2 Page number 10" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0 KN (to the left)\n", + "17.32 KN (downward)\n" + ] + } + ], + "source": [ + "\n", + "\n", + "\n", + "#components of force in horizontal and vertical components. \n", + "from math import cos,sin,pi\n", + "#variable declaration\n", + "\n", + "F= 20 #force in wire, KN\n", + "\n", + "#calculations\n", + "Fx= F*cos(60*pi/180) \n", + "Fy= F*sin(60*pi/180)\n", + "\n", + "print round(Fx,2),\"KN\" ,\"(to the left)\"\n", + "print round(Fy,2), \"KN\" ,\"(downward)\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.3 Page number 11" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Component normal to the plane : 9.4 KN\n", + "Component parallel to the plane : 3.42 KN\n" + ] + } + ], + "source": [ + "\n", + "\n", + " #The plane makes an angle of 20° to the horizontal. Hence the normal to the plane makes an angles of 70° to the horizontal i.e., 20° to the vertical\n", + "from math import cos,sin,pi\n", + "#variable declaration\n", + "W= 10 # black weighing, KN\n", + "\n", + "#calculations\n", + "\n", + "Nor= W*cos(20*pi/180) #Component normal to the plane\n", + "para= W*sin(20*pi/180) #Component parallel to the plane\n", + "\n", + "print \"Component normal to the plane :\",round(Nor,2),\"KN\"\n", + "print \"Component parallel to the plane :\",round(para,2) , \"KN\"\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.4 Page number 11" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "F1= 100.0 N\n", + "F2= 200.0 N\n", + "theta= 63.9 °\n" + ] + } + ], + "source": [ + "\n", + "\n", + "#Let the magnitude of the smaller force be F. Hence the magnitude of the larger force is 2F\n", + "\n", + "from math import pi,sqrt, acos\n", + "#variable declaration\n", + "R1=260 #resultant of two forces,N\n", + "R2=float(180) #resultant of two forces if larger force is reversed,N\n", + "\n", + "\n", + "\n", + "#calculations\n", + "\n", + "F=sqrt((pow(R1,2)+pow(R2,2))/10)\n", + "F1=F\n", + "F2=2*F\n", + "theta=acos((pow(R1,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*180/pi\n", + "\n", + "print \"F1=\",F1,\"N\"\n", + "print \"F2=\",F2,\"N\"\n", + "print \"theta=\",round(theta,1),\"°\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.5 Page number 12" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "F1= 326.35 N\n", + "F2= 223.24 N\n" + ] + } + ], + "source": [ + "\n", + "\n", + "#Let ?ABC be the triangle of forces drawn to some scale\n", + "#Two forces F1 and F2 are acting at point A\n", + "#angle in degrees '°'\n", + "\n", + "from math import sin,pi\n", + " \n", + "#variabble declaration\n", + "cnv=pi/180\n", + "\n", + "BAC = 20*cnv #Resultant R makes angle with F1 \n", + " \n", + "ABC = 130*cnv \n", + "\n", + "ACB = 30*cnv \n", + "\n", + "R = 500 #resultant force,N\n", + "\n", + "#calculations\n", + "#sinerule\n", + "\n", + "F1=R*sin(ACB)/sin(ABC)\n", + "F2=R*sin(BAC)/sin(ABC)\n", + "\n", + "print \"F1=\",round(F1,2),\"N\"\n", + "print \"F2=\",round(F2,2),\"N\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.6 Page number 12" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta= 78.13 °\n", + "alpha= 29.29 °\n" + ] + } + ], + "source": [ + "\n", + "\n", + "#Let ABC be the triangle of forces,'theta' be the angle between F1 and F2, and 'alpha' be the angle between resultant and F1 \n", + "\n", + "from math import sin,acos,asin,pi\n", + "\n", + "#variable declaration\n", + "cnv= 180/pi\n", + "F1=float(400) #all forces are in newtons,'N'\n", + "F2=float(260)\n", + "R=float(520)\n", + "\n", + "#calculations\n", + "\n", + "theta=acos((pow(R,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*cnv\n", + "\n", + "alpha=asin(F2*sin(theta*pi/180)/R)*cnv\n", + "\n", + "print\"theta=\",round(theta,2),\"°\"\n", + "print \"alpha=\",round(alpha,2),\"°\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 1.7 Page number 13" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "horizontal component= 2814.2 N\n", + "Vertical component = 1039.2 N\n", + "Component along crank = 507.1 N\n", + "Component normal to crank= 2956.8 N\n" + ] + } + ], + "source": [ + "\n", + "\n", + "#The force of 3000 N acts along line AB. Let AB make angle alpha with horizontal.\n", + "\n", + "from math import cos,sin,pi,asin,acos\n", + "\n", + "#variable declaration\n", + "F=3000 #force in newtons,'N'\n", + "BC=80 #length of crank BC, 'mm'\n", + "AB=200 #length of connecting rod AB ,'mm'\n", + "theta=60*pi/180 #angle b/w BC & AC\n", + "\n", + "#calculations\n", + "\n", + "alpha=asin(BC*sin(theta)/200)*180/pi\n", + "\n", + "HC=F*cos(alpha*pi/180) #Horizontal component \n", + "VC= F*sin(alpha*pi/180) #Vertical component \n", + "\n", + "#Components along and normal to crank\n", + "#The force makes angle alpha + 60 with crank.\n", + "alpha2=alpha+60\n", + "CAC=F*cos(alpha2*pi/180) # Component along crank \n", + "CNC= F*sin(alpha2*pi/180) #Component normal to crank \n", + "\n", + "\n", + "print \"horizontal component=\",round(HC,1),\"N\"\n", + "print \"Vertical component = \",round(VC,1),\"N\"\n", + "print \"Component along crank =\",round(CAC,1),\"N\"\n", + "print \"Component normal to crank=\",round(CNC,1),\"N\"" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit