From 2a5f1f9f2af82c46fbdba902c9dfdaba56c136b0 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Fri, 17 Mar 2017 23:30:25 +0600 Subject: Added(A)/Deleted(D) following books M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter1.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter2.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter3.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter5.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter7.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter8.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/Chapter9.ipynb M Introduction_to_Heat_Transfer_by_S._K._Som/chapter12.ipynb --- .../Chapter10.ipynb | 138 ++------------------- 1 file changed, 7 insertions(+), 131 deletions(-) (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb') diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb index 95f29d79..9eacc4ed 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb @@ -44,10 +44,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\"\n", @@ -94,29 +90,7 @@ "print\"LMTD=\",LMTD\n", "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", "A=Q/(U*LMTD)\n", - "print\"A=\",A\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"A=\",A" ] }, { @@ -150,10 +124,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\"\n", @@ -193,7 +163,7 @@ "#Area(A)=Q/(U*LMTD) in m**2\n", "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", "A=Q/(U*LMTD)\n", - "print\"A=\",A\n" + "print\"A=\",A" ] }, { @@ -233,10 +203,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\"\n", @@ -284,13 +250,7 @@ "#overall heat transfer coefficient(U)=Q/(A*F*LMTD)\n", "print\"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\"\n", "U=Q/(A*F*LMTD)\n", - "print\"U=\",U\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"U=\",U" ] }, { @@ -342,10 +302,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\"\n", @@ -424,33 +380,7 @@ "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n", "L=A/(math.pi*D)\n", "print\"Hence same result is obtained for both methods\"\n", - "print\"L=\",L\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"L=\",L" ] }, { @@ -482,10 +412,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\"\n", @@ -520,13 +446,7 @@ "#Hence The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci)in kW.\n", "print\"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\" \n", "Q=eff*Cmin*(Thi-Tci)\n", - "print\"Q=\",Q\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q=\",Q" ] }, { @@ -560,10 +480,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\"\n", @@ -603,22 +519,7 @@ "#The exit temprature(Tho) of air is given by Thi-(Q/(mdota*cpa))\n", "print\"The exit temprature of air in °C \"\n", "Tho=Thi-(Q/(mdota*1000*cpa))#NOTE:-The answer slightly varies from the answer in book(i.e Tho=26°C) because the value of Q taken in book is approximated to 1*10**6W.\n", - "print\"Tho=\",Tho\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Tho=\",Tho" ] }, { @@ -656,10 +557,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\"\n", @@ -702,28 +599,7 @@ "Tho=Tci;\n", "print\"Effectiveness of heat exchanger is \"\n", "eff=(mdoth*ch*(Thi-Tho))/(mdoth*ch*(Thi-Tci))\n", - "print\"eff=\",eff\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"eff=\",eff" ] } ], -- cgit