From 1ab1ae28c5ba41d5159b2f2922447419e2d64eb9 Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Wed, 9 Mar 2016 23:30:21 +0600 Subject: Added(A)/Deleted(D) following books A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter10_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter12_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter13_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter14_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter15_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter16_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter1_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter2_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter6_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter7_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter8_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/chapter9_1.ipynb A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:00_1.png A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:01:25_1.png A 1000_solved_Problems_in_Fluid_Mechanics_includes_Hydraulic_machines_by_K.Subramanya/screenshots/Screenshot_from_2016-01-14_17:02:44_1.png A Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter1.ipynb A Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/chapter3.ipynb A Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/1.png A Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/2.png A Applied_Chemistry_by_Dr._Mrs.Trupti_Paradkar/screenshots/3.png A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter10_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter11_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter12_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter13_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter14_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter15_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter1_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter2_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter3_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter4_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter5_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter6_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/chapter7_1.ipynb A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:50:16.png A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:52:27.png A Basic_Mathematics_for_Electricity_and_Electronics_by_Arthur_Beiser/screenshots/Screenshot_from_2016-03-09_13:53:23.png A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch1.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch10.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch11.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch12.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch2.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch3.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch5.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch6.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch7.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch8.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9MolFracNMolVol.png A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/Ch9_molarFracNMolVol.png A Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/screenshots/ch10_consistency.png A Machine_Design_by_T._H._Wentzell,_P._E/README.txt A Microwaves_and_Radar_Principles_and_Applications_by_A._K._Maini/README.txt A Network_Analysis_and_Synthesis_by_B_R_Gupta/README.txt --- .../Ch4.ipynb | 557 +++++++++++++++++++++ 1 file changed, 557 insertions(+) create mode 100644 Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb (limited to 'Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb') diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb new file mode 100644 index 00000000..c3a0a66f --- /dev/null +++ b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch4.ipynb @@ -0,0 +1,557 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4 - Heat effects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.1 Page: 118" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.1 - Page: 118\n", + "\n", + "\n", + "Value of Qv is -326.40 kcal\n", + "\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "print \"Example: 4.1 - Page: 118\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "Qp = -327## [kcal]\n", + "T = 27 + 273## [K]\n", + "R = 2*10**(-3)## [kcal/K mol]\n", + "#*************#\n", + "\n", + "# The reaction involved is:\n", + "# C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l)\n", + "deltan = 2 - 3#\n", + "Qv = Qp - deltan*R*T## [kcal]\n", + "print \"Value of Qv is %.2f kcal\\n\"%(Qv)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.2 Page: 119" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.2 - Page: 119\n", + "\n", + "\n", + "Heat produced in the reaction is -1019.9 kcal\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 4.2 - Page: 119\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "# Mg + (1/2)O2 = MgO ...............(1)\n", + "deltaH1 = -610.01## [kcal]\n", + "# 2Fe + (3/2)O2 = Fe2O3 ............(2)\n", + "deltaH2 = -810.14## [kcal]\n", + "#*************#\n", + "\n", + "# 3Mg + Fe2O3 = 3MgO + 2Fe .........(3)\n", + "# Multiplying (1) by 3 and substracting from (2), we get (3):\n", + "deltaH = 3*deltaH1 - deltaH2## [kcal]\n", + "print \"Heat produced in the reaction is %.1f kcal\\n\"%(deltaH)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.3 Page: 121" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.3 - Page: 121\n", + "\n", + "\n", + "The standard heat of formation of methane is -74.75 kJ/gmol\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 4.3 - Page: 121\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "# 2H2(g) + O2(g) ---------------> 2H2O .....................(1)\n", + "deltaH1 = -241.8*2## [kJ/gmol H2]\n", + "# C(graphite) + O2(g) =---------> CO2(g) ...................(2)\n", + "deltaH2 = -393.51## [kJ/gmol C]\n", + "# CH4(g) + 2O2(g) ---------------> CO2(g) + 2H2O(l) ........(3)\n", + "deltaH3 = -802.36## [kJ/mol CH4]\n", + "#*************#\n", + "\n", + "# For standard heat of formation of methane, (a) + (b) - (c)\n", + "# C + 2H2 ------------------------> CH4\n", + "deltaHf = deltaH1 + deltaH2 - deltaH3## [kJ/gmol]\n", + "print \"The standard heat of formation of methane is %.2f kJ/gmol\\n\"%(deltaHf)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.4 Page: 122" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.4 - Page: 122\n", + "\n", + "\n", + "Energy supplied by reaction A is -69.2 kJ\n", + "\n", + "Energy supplied by reaction B is -2802.8 kJ\n", + "\n", + "Reaction B supplies more energy to the organism\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 4.4 - Page: 122\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "deltaH_C6H12O6 = -1273## [kcal]\n", + "deltaH_C2H5OH = -277.6## [kcal]\n", + "deltaH_CO2 = -393.5## [kcal]\n", + "deltaH_H2O = -285.8## [kcal]\n", + "#**************#\n", + "\n", + "# C6H12O6(s) = 2C2H5OH(l) + 2CO2(g) ..........................(A)\n", + "deltaH_A = 2*deltaH_C2H5OH + 2*deltaH_CO2 - deltaH_C6H12O6## [kJ]\n", + "# C6H12O6(s) + 6O2(g) = 6CO2(g) + 6H2O(l) ...................(B)\n", + "deltaH_B = 6*deltaH_CO2 + 6*deltaH_H2O - deltaH_C6H12O6## [kJ]\n", + "print \"Energy supplied by reaction A is %.1f kJ\\n\"%(deltaH_A)#\n", + "print \"Energy supplied by reaction B is %.1f kJ\\n\"%(deltaH_B)#\n", + "if deltaH_A < deltaH_B:\n", + " print \"Reaction A supplies more energy to the organism\\n\"\n", + "else:\n", + " print \"Reaction B supplies more energy to the organism\\n\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.5 Page: 122" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.5 - Page: 122\n", + "\n", + "\n", + "Heat of formation of ZnSO4 is -233.48 kcal/kmol\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 4.5 - Page: 122\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "# Zn + S = ZnS ....................................................(A)\n", + "deltaH_A = -44## [kcal/kmol]\n", + "# ZnS + 3O2 = 2ZnO + 2SO2 .........................................(B)\n", + "deltaH_B = -221.88## [kcal/kmol]\n", + "# 2SO2 + O2 = 2SO3 ................................................(C)\n", + "deltaH_C = -46.88## [kcal/kmol]\n", + "# ZnO + SO3 = ZnSO4 ...............................................(D)\n", + "deltaH_D = -55.10## [kcal/kmol]\n", + "#***************#\n", + "\n", + "# Multiplying (A) by 2 & (D) by (2) and adding (A), (B), (C) & (D)\n", + "# Zn + S + 2O2 = ZnSO4\n", + "deltaH = 2*deltaH_A + deltaH_B + deltaH_C + 2*deltaH_D## [kcal/kmol for 2 kmol of ZnSO4]\n", + "print \"Heat of formation of ZnSO4 is %.2f kcal/kmol\\n\"%(deltaH/2)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.6 Page: 124" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.6 - Page: 124\n", + "\n", + "\n", + "Standard Heat of formation of NH3 is -11.8 kcal\n" + ] + } + ], + "source": [ + "print \"Example: 4.6 - Page: 124\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "# HC : Heat of Combustion\n", + "HC_NH3 = -90.6## [kcal]\n", + "HC_H2 = -68.3## [kcal]\n", + "#*************#\n", + "\n", + "# Heat of combustion of NH3:\n", + "# 2NH3 + 3O = N2 + 3H2O ............................ (A)\n", + "# Heat of combustion of H2:\n", + "# H2 + O = H2O ..................................... (B)\n", + "# Multiplying (B) by 3 & substracting from (A), we get:\n", + "# 2NH3 = N2 + 3H2 .................................. (C)\n", + "# Hf : Heat of Formation\n", + "Hf_NH3 = -(2*HC_NH3 - 3*HC_H2)/2## [kcal]\n", + "print \"Standard Heat of formation of NH3 is %.1f kcal\"%(Hf_NH3)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.7 Page: 125" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.7 - Page: 125\n", + "\n", + "\n", + "The maximum attainable temperature is 2566.2 K\n" + ] + } + ], + "source": [ + "print \"Example: 4.7 - Page: 125\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "# HC : Heat of Combustion\n", + "HC_C2H2 = -310600# # [cal]\n", + "#**************#\n", + "\n", + "# C2H2 + (5/2)O2 = 2CO2 + H2O\n", + "Q = -HC_C2H2## [cal]\n", + "# The gases present in the flame zone after combustion are carbon dioxide, water vapor and the unreacted nitrogen of the air.\n", + "# Since (5/2) mole of oxygen were required for combustion, nitrogen required would be 10 mol.\n", + "# Hence the composition of the resultant gas would be 2 mol CO2, 1 ol H2 & 10 mol N2.\n", + "# Q = integrate('Cp(T)','T',T,298)#\n", + "# On integrating we get:\n", + "# Q = 84.52*(T - 298) + 18.3*10**(-3)*(T**2 - 298**2)\n", + "#deff('[y] = f(T)','y = Q - 84.52*(T - 298) - 18.3*10**(-3)*(T**2 - 298**2)')#\n", + "def f(T):\n", + " y = Q - 84.52*(T - 298) - 18.3*10**(-3)*(T**2 - 298**2)\n", + " return y\n", + "from scipy.optimize import fsolve\n", + "T = fsolve(f,7)## [K]\n", + "print \"The maximum attainable temperature is %.1f K\"%(T)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.8 Page: 126" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.8 - Page: 126\n", + "\n", + "\n", + "The theoretical temperature of combustion is 1906 degree Celsius\n" + ] + } + ], + "source": [ + "print \"Example: 4.8 - Page: 126\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "Cp_CO2 = 54.56## [kJ/mol K]\n", + "Cp_O2 = 35.20## [kJ/mol K]\n", + "Cp_steam = 43.38## [kJ/mol K]\n", + "Cp_N2 = 33.32## [kJ/mol K]\n", + "# 2C2H6(g) + 7O2(g) = 4CO2(g) + 6H2O(g)\n", + "deltaH_273 = -1560000## [kJ/kmol]\n", + "#************#\n", + "\n", + "# Since the air is 25% in excess of the amount required,the combustion may be written as:\n", + "# C2H6(g) + (7/2)O2(g) = 2CO2(g) + 3H2O(g)\n", + "# 25% excess air is supplied.\n", + "# Since the air contains N2 = 79% and O2 = 21%\n", + "# C2H6(g) + 3.5O2(g) + 0.25*3.5O2(g) + (4.375*(79/21))N2 = 2CO2 + 3H2O + 0.875O2 + 16.46N2 .................. (A)\n", + "# Considering the reaction (A),\n", + "# Amount of O2:\n", + "O2 = 3.5 + 3.5*0.25## [mol]\n", + "# Amount of N2 required:\n", + "N2 = 4.375*(79/21)## [mol]\n", + "# Let the initial temperature of ethane and air be 0 OC and the temperature of products of combustion be T OC\n", + "# Since heat librated by combustion = heat accumulated by combustion products\n", + "Q = -deltaH_273## [kJ/mol K]\n", + "T = Q/(2*Cp_CO2 + 3*Cp_steam + 0.875*Cp_O2 + N2*Cp_N2)## [OC]\n", + "print \"The theoretical temperature of combustion is %d degree Celsius\"%(T)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.9 Page: 129" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.9 - Page: 129\n", + "\n", + "\n", + "Laten heat of ice at -20 OC is 1266 cal/mol\n", + "\n" + ] + } + ], + "source": [ + "print \"Example: 4.9 - Page: 129\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "T1 = 273## [K]\n", + "T2 = 253## [K]\n", + "deltaH_273 = 1440## [cal/mol]\n", + "Cp = 8.7## [cal/mol]\n", + "#**************#\n", + "\n", + "deltaH_253 = deltaH_273 + Cp*(T2 - T1)## [cal/mol]\n", + "print \"Laten heat of ice at -20 OC is %d cal/mol\\n\"%(deltaH_253)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.10 Page: 129" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.10 - Page: 129\n", + "\n", + "\n", + "Heat of formation at 1273 K is -11172 cal\n" + ] + } + ], + "source": [ + "print \"Example: 4.10 - Page: 129\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "T2 = 1273## [K]\n", + "T1 = 300## [K]\n", + "deltaH_300 = -11030## [cal/mol]\n", + "#*************#\n", + "\n", + "# The chemical reaction involved is:\n", + "# N2 + 3H2 = 2NH3\n", + "# (1/2)N2 + (3/2)H2 = NH3\n", + "# deltaH_1273 = deltaH_300 + integrate('Cp_NH3(T) - (1/2)*Cp_N2(T) - (1/2)*Cp_H2(T)','T',1273,300)#\n", + "from sympy.mpmath import quad\n", + "deltaH_1273 = deltaH_300 + quad(lambda T:(6.2 + 7.8*10**(-3)*T - 7.2*10**(-6)*T**2) - (1/2)*(6.45 + 1.4*10**(-3)*T) - (1/2)*(6.94 - 0.2*10**(-3)*T),[1273,300])## [cal]\n", + "print \"Heat of formation at 1273 K is %d cal\"%(deltaH_1273)#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example: 4.11 Page: 130" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example: 4.11 - Page: 130\n", + "\n", + "\n", + "Percent of excess air supplied is 39.9 %\n" + ] + } + ], + "source": [ + "print \"Example: 4.11 - Page: 130\\n\\n\"\n", + "\n", + "# Solution\n", + "\n", + "#*****Data*****#\n", + "CO2 = 13.4## [percent by volume]\n", + "N2 = 80.5## [percent by volume]\n", + "O2 = 6.1## [percent by volume]\n", + "#*************#\n", + "\n", + "# Basis : 100 cubic m of flue gas.\n", + "Vol_N2_flue = N2## [Volume of Nitrogen in flue gas, cubic m]\n", + "Vol_O2_flue = O2## [Volume of O2 in flue gas, cubic m]\n", + "Vol_Air = N2/0.79## [Volume of air supplied, cubic m]\n", + "Vol_O2 = Vol_Air*0.21## [Volume of O2 in air supply, cubic m]\n", + "Vol_O2_cumbustion = Vol_O2 - Vol_O2_flue## [Volume of O2 used up in cumbustion of the fuel, cubic m]\n", + "Excess_Air = Vol_O2_flue/Vol_O2_cumbustion * 100## [percent of excess air supplied]\n", + "print \"Percent of excess air supplied is %.1f %%\"%(Excess_Air)#" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit