From 47d7279a724246ef7aa0f5359cf417992ed04449 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Wed, 3 Jun 2015 15:27:17 +0530 Subject: add books --- Integrated_Electronics/Chapter7.ipynb | 316 ++++++++++++++++++++++++++++++++++ 1 file changed, 316 insertions(+) create mode 100755 Integrated_Electronics/Chapter7.ipynb (limited to 'Integrated_Electronics/Chapter7.ipynb') diff --git a/Integrated_Electronics/Chapter7.ipynb b/Integrated_Electronics/Chapter7.ipynb new file mode 100755 index 00000000..da5e0b6b --- /dev/null +++ b/Integrated_Electronics/Chapter7.ipynb @@ -0,0 +1,316 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 07 : Integrated Circuit Fabrication and Characteristic" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.1, Page No 215" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#initialisation of variables\n", + "\n", + "print('At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed')\n", + "q = 1.6*(10**-19) #Charge of electron\n", + "yn=1300.0 #mobility of silicon\n", + "p = 0.5 #resistivity in ohm=cm\n", + "y=2.2\n", + "\n", + "#Calculations\n", + "t=2.0*3600 #in sec.\n", + "xi = 2.7*(10**-4) #Junction Depth in cm.\n", + "n = 1/(p*yn*q) #Concentration of doped silicon wafer\n", + "print(\"The concentration n = %.2f cm^-3 x 10^16\" %(n/10**16))\n", + "print('The junction is formed when N = n')\n", + "\n", + "#y = xi/(2*(D*t)^0.5)\n", + "D=((xi)**2/((2*y)**2*t)) #Diffusion Constant\n", + "\n", + "#Results\n", + "print(\"The value of Diffusion Constant for Boron = %.2f cm^2/sec X 10^-13\" %(D*10**13))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed\n", + "The concentration n = 0.96 cm^-3 x 10^16\n", + "The junction is formed when N = n\n", + "The value of Diffusion Constant for Boron = 5.23 cm^2/sec X 10^-13\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2, Page No 215" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "d=5.2*10**-13 #from previous example\n", + "depth=1.7*10**-4\n", + "t=2*3600.0\n", + "c=2.5*10**17 # boron concentration cm^3\n", + "\n", + "#Calculations\n", + "y = depth/(2*(math.sqrt(d*t)))\n", + "q=(c*(math.sqrt(math.pi*4*10**-13*3420)))/(math.exp(-((depth**2)/(4*4*10**-13*3420))))\n", + "\n", + "\n", + "#Results\n", + "print(\"The value of Y is = %.2f \" %(y))\n", + "print(\"The value of Q is = %.2f cm2 X 10^15 \" %(q/10**15))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Y is = 1.39 \n", + "The value of Q is = 3.22 cm2 X 10^15 \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.3, Page No 222" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "y=100.0*10**-4 #mm\n", + "h=500.0 #cm^2/V-s\n", + "p=10.0**16 #boron of concentration\n", + "\n", + "\n", + "#Calculations\n", + "Rs=1.0/(1.6*10**-19*h*p*y)\n", + "\n", + "#Results\n", + "print(\"The value of Rs sheet resistance is = %.2f ohm/sqare\" %(Rs))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Rs sheet resistance is = 125.00 ohm/sqare\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.4, Page No 223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "Rs=100.0 #ohm/square\n", + "l=50.0 #mm\n", + "w=10 #mm\n", + "\n", + "\n", + "#Calculations\n", + "R=Rs*(l/w)\n", + "\n", + "#Results\n", + "print(\"The resistance of defused resistor is = %.2f ohm\" %(R))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The resistance of defused resistor is = 500.00 ohm\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.5, Page No 225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "A=100*10**-8 #mm^2\n", + "q=1.6*10**-19\n", + "Nd=10**16 #donor concentration /cm^3\n", + "e=11.9*8.85*10**-14\n", + "Vj=0.82 #v\n", + "\n", + "\n", + "#Calculations\n", + "C=A*math.sqrt((q*Nd*e)/(2*Vj))\n", + "\n", + "#Results\n", + "print(\"The capacitance is = %.f fF\" %(C*10**15))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The capacitance is = 32 fF\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6, Page No 225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "A=100*10*10**-8 #mm^2\n", + "q=1.6*10**-19\n", + "e=11.9*8.85*10**-14\n", + "Vj=0.98 #v\n", + "Mn=1300.0\n", + "pn=0.01\n", + "\n", + "\n", + "\n", + "#Calculations\n", + "Nd=1/(q*Mn*pn) #donor concentration /cm^3\n", + "C=A*math.sqrt((q*Nd*e)/(2*Vj))\n", + "\n", + "#Results\n", + "print(\"The capacitance is = %.f pF\" %(C*10**12))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The capacitance is = 2 pF\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.7, Page No 226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#initialisation of variables\n", + "e=3.9*8.85*10**-14\n", + "d=20*10**-8\n", + "\n", + "\n", + "#Calculations\n", + "C=(e/d)*(10**9/10**8)\n", + "\n", + "#Results\n", + "print(\"The capacitance per unit area is = %.2f fF/mM^2\" %(C*10**6))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The capacitance per unit area is = 17.26 fF/mM^2\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit