From c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb | 217 ++++++++++++++++++++++++ 1 file changed, 217 insertions(+) create mode 100755 Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb (limited to 'Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb') diff --git a/Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb b/Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb new file mode 100755 index 00000000..02425dea --- /dev/null +++ b/Fundamentals_Of_Thermodynamics/Chapter7_6.ipynb @@ -0,0 +1,217 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a60a19bd48510a099eb4483e5176d858019753b734df1f9001e5af0e3bc7fc2e" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter7:THE SECOND LAW OF THERMODYNAMICS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.1:pg-241" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 1\n", + "#rate of fuel consumption\n", + "\n", + "W=136*0.7355 #output of automobile engine in kW\n", + "neng=0.3 #thermal efficiency of automobile engine\n", + "Qh=W/neng #energy output of fuel in kW\n", + "Q1=Qh-W #total rate of energy rejected to the ambient\n", + "qh=35000.0 #energy output of fuel in kJ/kg\n", + "m=Qh/qh #rate of fuel consumption in kg/s\n", + "print\"\\n hence,total rate of energy rejected is\",round(Q1),\"kW\" \n", + "print\"\\n and rate of fuel consumption is\",round(m,4),\"kg/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " hence,total rate of energy rejected is 233.0 kW\n", + "\n", + " and rate of fuel consumption is 0.0095 kg/s\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.2:pg-243" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 2\n", + "#coefficient of performance of refrigerator\n", + "\n", + "Qh=400 #heat rejected to kitchen air in W\n", + "W=150.0 #electrical input power in W\n", + "Q1=Qh-W #rate of energy taken out to cold space in W\n", + "B=Ql/W #coefficicent of performnace of refrigerator\n", + "print\"\\n hence,rate of energy taken out of the cold space is\",round(Q1),\"W\"\n", + "print\"\\n and coefficient of performance of the refrigerator is\",round(B,2)," + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " hence,rate of energy taken out of the cold space is 250.0 W\n", + "\n", + " and coefficient of performance of the refrigerator is 1.67\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.3:pg-256" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 3\n", + "# temperature at which the pressure go to zero\n", + "\n", + "P1=110.9#pressur at the ice point in kPa\n", + "P2=151.5#pressure at the steam point in kPa\n", + "T1=0#in C\n", + "T2=100#in C\n", + "S=(P2-P1)/(T2-T1)#slope in kPa/C\n", + "T=T1-(P1/S)# absolute ideal gas temperature in C\n", + "print\"\\n hence,the absolute ideal gas temperature is\",round(T,2),\"C\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " hence,the absolute ideal gas temperature is -273.15 C\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.4:pg-260" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 4\n", + "#comparison of ideal carnot heat engine with actual heat engine\n", + "\n", + "Qh=1000.0 #rate of heat transfer to heat engine in kW\n", + "W=450.0 #rate of production of work in kW\n", + "Ql=Qh-W #rate of heat rejected by heat engine in kW\n", + "nthermal=W/Qh #efficiency from the definition of efficiency\n", + "Tl=300 #temperature of surroundings in K\n", + "Th=550.0 #temperature of heat source in Celsius\n", + "ncarnot=1-Tl/(Th+273.15) #efficiency if heat engine is considered to be ideal carnot heat engine\n", + "W2=ncarnot*Qh #rate of work production if heat engine is assumed to be ideal carnot heat engine in kW\n", + "Q12=Qh-W2 #rate of heat rejected by heat engine in kW if heat engine is assumed to be ideal carnot heat engine\n", + "print\"\\n hence,energy discarded to the ambient surroundings iS\",round(Q12,4),\"kw\"\n", + "print\"\\n and the engine efficiency is\",round(ncarnot,4)," + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " hence,energy discarded to the ambient surroundings iS 364.4536 kw\n", + "\n", + " and the engine efficiency is 0.6355\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.5:pg-261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#example 5\n", + "#calculating required work\n", + "\n", + "Tl=24+273.15 #room temperature in Kelvins\n", + "Th=35+273.15 #atmospheric temperature in Kelvins\n", + "Ql=4 #rate of heat rejection from room\n", + "B=Tl/(Th-Tl) #coefficient of performance of air conditioner\n", + "W=Ql/B #required work in kW\n", + "print\"\\n hence,the magnitude of reqiured work is\",round(W,2),\"kw\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " hence,the magnitude of reqiured work is 0.15 kw\n" + ] + } + ], + "prompt_number": 40 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit