From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb | 529 +++++++++++++++++++++++ 1 file changed, 529 insertions(+) create mode 100755 Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb (limited to 'Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb') diff --git a/Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb b/Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb new file mode 100755 index 00000000..814dd14b --- /dev/null +++ b/Fundamentals_Of_Thermodynamics/Chapter11_6.ipynb @@ -0,0 +1,529 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a88db765bb23172043955029f8f04edaf8e710f3cbd46a5474827f42fa8a65ec" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter11:Power and Refrigeration Systems\u2014With Phase Change" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.1:Pg-425" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Ques 1\n", + "#To determine the efficiency of Rankine cycle\n", + "\n", + "#1-Inlet state of pump\n", + "#2-Exit state of pump\n", + "P2=2000;#Exit pressure in kPa\n", + "P1=10;#Inlet pressure in kPa\n", + "v=0.00101;#specific weight of water in m^3/kg\n", + "wp=v*(P2-P1);#work done in pipe in kJ/kg\n", + "h1=191.8;#Enthalpy in kJ/kg from table\n", + "h2=h1+wp;#enthalpy in kJ/kg\n", + "#2-Inlet state for boiler\n", + "#3-Exit state for boiler\n", + "h3=2799.5;#Enthalpy in kJ/kg\n", + "#3-Inlet state for turbine\n", + "#4-Exit state for turbine\n", + "#s3=s4(Entropy remain same)\n", + "s4=6.3409;#kJ/kg\n", + "sf=0.6493;#Entropy at liquid state in kJ/kg\n", + "sfg=7.5009;#Entropy difference for vapor and liquid state in kJ/kg\n", + "x4=(s4-sf)/sfg;#x-factor\n", + "hfg=2392.8;#Enthalpy difference in kJ/kg for turbine\n", + "h4=h1+x4*hfg;#Enthalpy in kJ/kg\n", + "\n", + "nth=((h3-h2)-(h4-h1))/(h3-h2);\n", + "print\" Percentage efficiency =\",round(nth*100,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Percentage efficiency = 30.3\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.2:Pg-429" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Ques 2\n", + "#To determine the efficiency of Rankine cycle\n", + "\n", + "#1-Inlet state of pump\n", + "#2-Exit state of pump\n", + "P2=4000;#Exit pressure in kPa\n", + "P1=10;#Inlet pressure in kPa\n", + "v=0.00101;#specific weight of water in m^3/kg\n", + "wp=v*(P2-P1);#work done in pipe in kJ/kg\n", + "h1=191.8;#Enthalpy in kJ/kg from table\n", + "h2=h1+wp;#enthalpy in kJ/kg\n", + "#2-Inlet state for boiler\n", + "#3-Exit state for boiler\n", + "h3=3213.6;#Enthalpy in kJ/kg from table\n", + "#3-Inlet state for turbine\n", + "#4-Exit state for turbine\n", + "#s3=s4(Entropy remain same)\n", + "s4=6.7690;#Entropy in kJ/kg from table\n", + "sf=0.6493;#Entropy at liquid state in kJ/kg from table\n", + "sfg=7.5009;#Entropy difference for vapor and liquid state in kJ/kg from table\n", + "x4=(s4-sf)/sfg;#x-factor\n", + "hfg=2392.8;#Enthalpy difference in kJ/kg for turbine\n", + "h4=h1+x4*hfg;#Enthalpy in kJ/kg\n", + "\n", + "nth=((h3-h2)-(h4-h1))/(h3-h2);\n", + "print\"Percentage efficiency =\",round(nth*100,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage efficiency = 35.3 %\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.2E:Pg-431" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Ques 2\n", + "#To determine the efficiency of Rankine cycle\n", + "\n", + "#1-Inlet state of pump\n", + "#2-Exit state of pump\n", + "P2=600.0 ;#Exit pressure in lbf/in^2\n", + "P1=1.0;#Inlet pressure in lbf/in^2\n", + "v=0.01614;#specific weight of water in ft^3/lbm\n", + "wp=v*(P2-P1)*(144.0/778.0);#work done in pipe in Btu/lbm\n", + "h1=69.70;#Enthalpy in Btu/lbm from table\n", + "h2=h1+wp;#enthalpy in Btu/lbm\n", + "#2-Inlet state for boiler\n", + "#3-Exit state for boiler\n", + "h3=1407.6;#Enthalpy in Btu/lbm from table\n", + "#3-Inlet state for turbine\n", + "#4-Exit state for turbine\n", + "#s3=s4(Entropy remain same)\n", + "s4=1.6343;#Entropy in Btu/lbm from table\n", + "sf=1.9779;#Entropy at liquid state in Btu/lbm from table\n", + "sfg=1.8453;#Entropy difference for vapor and liquid state in Btu/lbm from table\n", + "x4=-(s4-sf)/sfg;#x-factor\n", + "hfg=1036.0;#Enthalpy difference in Btu/lbm for turbine\n", + "h4=1105.8-x4*hfg;#Enthalpy in Btu/lbm\n", + "wt=(h3-h4) #work done in turbine in Btu/lbm\n", + "\n", + "nth=((h3-h4)-wp)/(h3-h2);\n", + "print\"Percentage efficiency =\",round(nth*100,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Percentage efficiency = 36.9 %\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.3:Pg-433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Ques 3\n", + "#To determine the efficiency of a cycle\n", + "\n", + "#1-Inlet state of pump\n", + "#2-Exit state of pump\n", + "P2=4000;#Exit pressure in kPa\n", + "P1=10;#Inlet pressure in kPa\n", + "v=0.00101;#specific weight of water in m^3/kg\n", + "wp=v*(P2-P1);#work done in pipe in kJ/kg\n", + "h1=191.8;#Enthalpy in kJ/kg from table\n", + "h2=h1+wp;#enthalpy in kJ/kg\n", + "#2-Inlet state for boiler\n", + "#3-Exit state for Boiler\n", + "h3=3213.6;#Enthalpy in kJ/kg from table\n", + "#3-Inlet state for high pressure turbine\n", + "#4-Exit state for high pressure turbine\n", + "#s3=s4(Entropy remain same)\n", + "s4=6.7690;#Entropy in kJ/kg from table\n", + "sf=1.7766;#Entropy at liquid state in kJ/kg from table\n", + "sfg=5.1193;#Entropy difference for vapor and liquid state in kJ/kg from table\n", + "x4=(s4-sf)/sfg;#x-factor\n", + "hf=604.7#Enthalpy of liquid state in kJ/kg\n", + "hfg=2133.8;#Enthalpy difference in kJ/kg for turbine\n", + "h4=hf+x4*hfg;#Enthalpy in kJ/kg\n", + "#5-Inlet state for low pressure turbine\n", + "#6-Exit pressure for low pressure turbine\n", + "sf=0.6493;#Entropy in liquid state in kJ/kg for turbine\n", + "h5=3273.4;#enthalpy in kJ/kg \n", + "s5=7.8985;#Entropy in kJ/kg\n", + "sfg=7.5009;#entropy diff in kJ/kg \n", + "x6=(s5-sf)/sfg;#x-factor\n", + "hfg=2392.8;#enthalpy difference for low pressure turbine in kj/kg\n", + "h6=h1+x6*hfg;#entropy in kg/kg\n", + "wt=(h3-h4)+(h5-h6);#work output in kJ/kg\n", + "qh=(h3-h2)+(h5-h4);\n", + "\n", + "nth=(wt-wp)/qh;\n", + "print\" Percentage efficiency =\",round(nth*100,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Percentage efficiency = 35.9 %\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.4:Pg-438" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques4\n", + "#Efficiency of Refrigeration cycle\n", + "\n", + "#from previous examples\n", + "h1=191.8;#kJ/kg\n", + "h5=3213.6;#kg/kg\n", + "h6=2685.7;#kJ/kg\n", + "h7=2144.1;#kJ/kg\n", + "h3=604.7;#kJ/kg\n", + "#1-Inlet state of pump\n", + "#2-Exit state of pump\n", + "P2=400;#Exit pressure in kPa\n", + "P1=10; #Inlet pressure in kPa\n", + "v=0.00101;#specific weight of water in m^3/kg\n", + "wp1=v*(P2-P1);#work done for low pressure pump in kJ/kg\n", + "h1=191.8;#Enthalpy in kJ/kg from table\n", + "h2=h1+wp1;#enthalpy in kJ/kg\n", + "#5-Inlet state for turbine\n", + "#6,7-Exit state for turbine\n", + "y=(h3-h2)/(h6-h2);#extraction fraction\n", + "wt=(h5-h6)+(1-y)*(h6-h7);#turbine work in kJ/kg\n", + "#3-Inlet for high pressure pump\n", + "#4-Exit for high pressure pump\n", + "P3=400;#kPa\n", + "P4=4000;#kPa\n", + "v=0.001084;#specific heat for 3-4 process in m^3/kg\n", + "wp2=v*(P4-P3);#work done for high pressure pump\n", + "h4=h3+wp2;#Enthalpy in kJ/kg\n", + "wnet=wt-(1-y)*wp1-wp2;\n", + "qh=h5-h4;#Heat output in kJ/kg\n", + "nth=wnet/qh;\n", + "print\" Refrigerator Efficiency =\",round(nth*100,1),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " Refrigerator Efficiency = 37.5 %\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.5:Pg-443" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques5\n", + "#To determine thermal efficiency of cycle\n", + "\n", + "#5-Inlet state for turbine\n", + "#6-Exit state for turbine\n", + "#h-Enthalpy at a state \n", + "#s-Entropy at a state\n", + "#from steam table\n", + "h5=3169.1;#kJ/kg\n", + "s5=6.7235;#kJ/kg\n", + "s6s=s5;\n", + "sf=0.6493;#Entropy for liquid state in kJ/kg\n", + "sfg=7.5009;#Entropy difference in kJ/kg\n", + "hf=191.8;#kJ/kg\n", + "hfg=2392.8;#Enthalpy difference in kJ/kg\n", + "x6s=(s6s-sf)/sfg;#x-factor\n", + "h6s=hf+x6s*hfg;#kJ/Kg at state 6s\n", + "nt=0.86;#turbine efficiency given\n", + "wt=nt*(h5-h6s);\n", + "#1-Inlet state for pump\n", + "#2-Exit state for pump\n", + "np=0.80;#pump efficiency given\n", + "v=0.001009;#specific heat in m^3/kg\n", + "P2=5000;#kPa\n", + "P1=10;#kPa\n", + "wp=v*(P2-P1)/np;#Work done in pump in kJ/kg\n", + "wnet=wt-wp;#net work in kJ/kg\n", + "#3-Inlet state for boiler\n", + "#4-Exit state for boiler\n", + "h3=171.8;#in kJ/kg from table\n", + "h4=3213.6;#kJ/kg from table\n", + "qh=h4-h3;\n", + "nth=wnet/qh;\n", + "print \"Cycle Efficiency =\",round(nth*100,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cycle Efficiency = 29.2 %\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.5E:Pg-445" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques5\n", + "#To determine thermal efficiency of cycle\n", + "\n", + "#5-Inlet state for turbine\n", + "#6-Exit state for turbine\n", + "#h-Enthalpy at a state \n", + "#s-Entropy at a state\n", + "#from steam table\n", + "h5=1386.8;#Btu/lbm\n", + "s5=1.6248;#Btu/lbm\n", + "s6s=s5;\n", + "sf=1.9779;#Entropy for liquid state in Btu/lbm\n", + "sfg=1.8453;#Entropy difference in Btu/lbm\n", + "hf=1105.8;# Btu/lbm\n", + "hfg=1036.0;#Enthalpy difference in Btu/lbm\n", + "x6s=(s6s-sf)/sfg;#x-factor\n", + "h6s=hf+x6s*hfg;#Btu/lbm at state 6s\n", + "nt=0.86;#turbine efficiency given\n", + "wt=nt*(h5-h6s);\n", + "#1-Inlet state for pump\n", + "#2-Exit state for pump\n", + "np=0.80;#pump efficiency given\n", + "v=0.016;#specific heat in ft^3/lbm\n", + "P2=800.0;# lbf/in^2\n", + "P1=1.0;# lbf/in^2\n", + "wp=(v*(P2-P1)*144.0)/(np*778.0);#Work done in pump in Btu/lbm\n", + "wnet=wt-wp;#net work in Btu/lbm\n", + "#3-Inlet state for boiler\n", + "#4-Exit state for boiler\n", + "h3=65.1;#in Btu/lbm from table\n", + "h4=1407.6;# Btu/lbm from table\n", + "qh=h4-h3;\n", + "nth=wnet/qh;\n", + "print \"Cycle Efficiency =\",round(nth*100,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Cycle Efficiency = 30.48 %\n" + ] + } + ], + "prompt_number": 60 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.6:Pg-451" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques6\n", + "#to determine the rate of refrigeration\n", + "\n", + "# refer to fig 11.21 in book\n", + "mdot=0.03 # mass flow rate in Kg/s\n", + "T1=-20 # temperature in evaporator in celsius\n", + "T3=40 #temperature in evaporator in Celsius\n", + "P2=1017 # saturation pressure in KPa\n", + "\n", + "# from table of R-134a refrigerant\n", + "h1=386.1 # enthalpy at state 1 in kJ/kg,\n", + "S1=1.7395 # entropy at state 1 in kJ/kg.K\n", + "S2=S1 # isentropic process\n", + "T2=47.7# corresponding value to S2 in table of R-134a in degree celsius\n", + "h2=428.4 # corresponding value to S2 in table of R-134a in kJ/kg\n", + "wc=h2-h1 # work done in compressor in kJ/kg\n", + "h4=h3=256.5 #enthalpy at state 4 and 3 in kJ/kg\n", + "qL=h1-h4 #Heat rejected in kJ/kg\n", + "\n", + "B=qL/wc # COP\n", + "\n", + "print\" the COP of the plant is\",round(B,2)\n", + "print\" the refrigeration rate is\",round(mdot*qL,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " the COP of the plant is 3.06\n", + " the refrigeration rate is 3.89\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex11.7:Pg-454" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#ques7\n", + "#to determine the COP of cycle\n", + "\n", + "P1=125 # pressure at state 1 in kPa\n", + "P2=1.2 # pressure at state 2 in MPa\n", + "P3=1.19 # pressure at state 3 in MPa,\n", + "P4=1.16 # pressure at state 4 in MPa,\n", + "P5=1.15 # pressure at state 5 in MPa,\n", + "P6=P7=140 # pressure at state 6 and 7 in kPa,\n", + "P8=130 # pressure at state 8 in kPa,\n", + "T1=-10 #temperaure at state 1 in \u25e6C\n", + "T2=100 #temperaure at state 2 in \u25e6C\n", + "T3=80 #temperaure at state 3 in \u25e6C\n", + "T4=45 #temperaure at state 4 in \u25e6C\n", + "T5=40 #temperaure at state 5 in \u25e6C\n", + "T8=-20 #temperaure at state 8 in \u25e6C\n", + "q=-4 # heat transfer in kJ/Kg\n", + "\n", + "#x6=x7 quality condition given in question\n", + "\n", + "\n", + "# the following values are taken from table for refrigerant R-134a\n", + "h1=394.9 # enthalpy at state 1 in kJ/kg\n", + "h2=480.9 # enthalpy at state 2 in kJ/kg\n", + "h8=386.6 # enthalpy at state 8 in kJ/kg\n", + "wc=h2-h1-q # from first law\n", + "h5=h6=h7=256.4 # as x6=x7 and from table at state 5 in Kj/Kg\n", + "qL=h8-h7 # from first law \n", + "B=qL/wc # COP\n", + "print\" the COP of the plant is\",round(B,3)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " the COP of the plant is 1.447\n" + ] + } + ], + "prompt_number": 20 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit