From 36a03d6d76bac315dba73b2ba9555c7e3fe0234f Mon Sep 17 00:00:00 2001 From: nice Date: Thu, 9 Oct 2014 18:07:00 +0530 Subject: updated books --- .../chap16.ipynb | 874 +++++++++++++++++++++ 1 file changed, 874 insertions(+) create mode 100755 Fundamental_of_internal_combustion_engines/chap16.ipynb (limited to 'Fundamental_of_internal_combustion_engines/chap16.ipynb') diff --git a/Fundamental_of_internal_combustion_engines/chap16.ipynb b/Fundamental_of_internal_combustion_engines/chap16.ipynb new file mode 100755 index 00000000..158b33df --- /dev/null +++ b/Fundamental_of_internal_combustion_engines/chap16.ipynb @@ -0,0 +1,874 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter16:Engine Testing and Performance" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.1 page no: 519" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "N=3000 #The speed of the engine in rpm \n", + "r=9 #Compression ratio \n", + "l=17.2 #The length of the connecting rod in cm\n", + "t=20 #The combustion ends at a TDC in degrees\n", + "k=3 #Three litre spark engine\n", + "n=6.0 #V-6 Engine\n", + "\n", + "#Calculations\n", + "import math\n", + "Vs=(k/n)*10**-3\n", + "d=(((Vs*4)/math.pi)**(1/3.0))\n", + "L=d*100\n", + "up=2*d*N/60.0\n", + "Vc=(Vs/(r-1))*10**6\n", + "cr=L/2.0\n", + "R=l/cr\n", + "up1=up*((math.pi/2.0)*math.sin(math.pi/9.0)*(1+(math.cos(math.pi/9.0)/(R**2-(math.sin(math.pi/9.0)**2))**(1/2.0))))\n", + "s=(cr*math.cos(math.pi/9.0))+(l**2-(cr**2)*(math.sin(math.pi/9.0))**2)**(1/2.0)\n", + "x=l+cr-s\n", + "V=Vc+(math.pi/4.0)*(d*100)**2*x\n", + "\n", + "#Output \n", + "print\"(a)The cylinder bore and The stroke length (d = L) = \",round(L,2),\"cm\"\n", + "print\"(b) The average piston speed = \",round(up,2),\"m/s\"\n", + "print\"(c) The clearence volume of one cylinder = \",round(Vc,2),\"cm**3\"\n", + "print\"(d) The piston speed at the end of combustion = \",round(up1,2),\"m/s\"\n", + "print\"(e) The distance the piston travels from TDC at the end of combustion = \",round(x,2),\"cm\" \n", + "print\"(f) Instantaneous volume = \",round(V,2),\"cm**3\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)The cylinder bore and The stroke length (d = L) = 8.6 cm\n", + "(b) The average piston speed = 8.6 m/s\n", + "(c) The clearence volume of one cylinder = 62.5 cm**3\n", + "(d) The piston speed at the end of combustion = 5.71 m/s\n", + "(e) The distance the piston travels from TDC at the end of combustion = 0.32 cm\n", + "(f) Instantaneous volume = 81.24 cm**3\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.2 page no: 521" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Input data\n", + "d=0.175 #The diameter of the bore in m\n", + "L=0.32 #The length of the stroke in m\n", + "p=6.5 #Mean effective pressure in bar\n", + "pp=0.4 #Pumping loop mean effective pressure in bar\n", + "N=510.0 #The speed of the engine in rpm\n", + "pm=0.65 #Diagrams from the dead cycle give a mep in bar\n", + "n=55.0 #Firing strokes per minute \n", + "\n", + "#Calculations\n", + "import math\n", + "pmi=p-pp \n", + "c=((N/2.0)-n) \n", + "ipw=pmi*10**5*L*(math.pi/4.0)*d**2*(n/60.0)*(1/1000.0) \n", + "Pp=pm*10**5*L*(math.pi/4.0)*d**2*(c/60.0)*(1/1000.0) \n", + "fp=ipw-Pp #Power in kW\n", + "fip=pmi*10**5*L*(math.pi/4.0)*d**2*(N/(2*60))*(1/1000.0)\n", + "fbp=fip-fp\n", + "nm=(fbp/fip)*100\n", + "\n", + "#Output \n", + "print\" The full load break power = \",round(fbp,2),\"kW\" \n", + "print\"The mechanical efficiency of the engine = \",round(nm,2),\"percent\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The full load break power = 17.32 kW\n", + "The mechanical efficiency of the engine = 86.79 percent\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.3 page no: 522" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "d=0.09 #The diameter of the bore in m\n", + "L=0.1 #The length of the stroke in m\n", + "T=120 #The torque measured in Nm\n", + "n=4 #Number of cylinders \n", + "\n", + "#Calculations\n", + "import math\n", + "pmb=((4*math.pi*T)/(L*(math.pi/4)*d**2*n))/10.0**5\n", + "\n", + "#Output \n", + "print\"The brake mean effective pressure = \",round(pmb,2),\"bar\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The brake mean effective pressure = 5.93 bar\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.4 page no: 522" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Input data\n", + "d=0.06 #The diameter of the bore in m \n", + "L=0.085 #The length of the stroke in m\n", + "N=3000 #The speed of the engine in rpm\n", + "r=0.35 #Torque arm radius in m\n", + "W=160 #Weight in N\n", + "f=6.6 #Fuel consumption in l/h\n", + "g=0.78 #specific gravity of the fuel \n", + "CV=44000 #The calorific value of the fuel in kJ/kg\n", + "w1=114 #Brake load for cylinder 1 in N\n", + "w2=110 #Brake load for cylinder 2 in N\n", + "w3=112 #Brake load for cylinder 3 in N\n", + "w4=116 #Brake load for cylinder 4 in N\n", + "n=4 #Number of cylinders\n", + "\n", + "#Calculations\n", + "import math\n", + "Vf=(f*10**-3)/3600.0\n", + "df=g*1000\n", + "mf=df*Vf\n", + "T=W*r\n", + "bp=(2*math.pi*N*T)/(60.0*1000.0)\n", + "pmb=((120*bp*1000)/(L*(math.pi/4.0)*d**2*N*n))/10.0**5\n", + "nb=((bp)/(mf*CV))*100\n", + "bsfc=(mf*3600)/bp\n", + "bp1=((2*math.pi*N*w1*r)/(60.0*1000.0))\n", + "ip1=bp-bp1 \n", + "ip2=bp-((2*math.pi*N*w2*r)/(60*1000))\n", + "ip3=bp-((2*math.pi*N*w3*r)/(60*1000))\n", + "ip4=bp-((2*math.pi*N*w4*r)/(60*1000))\n", + "ip=ip1+ip2+ip3+ip4\n", + "nm=(bp/ip)*100\n", + "pmi=pmb/(nm/100.0)\n", + "\n", + "#Output\n", + "print\"The brake power =\",round(bp,3),\"kW \" \n", + "print\"The brake mean effective pressure = \",round(pmb,3),\"bar\"\n", + "print\"The brake thermal efficiency =\" ,round(nb,0),\"percent\"\n", + "print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\"\n", + "print\"The indicated power = \",round(ip,2),\"kW \"\n", + "print\"The mechanical efficiency =\", round(nm,1),\"percent \" \n", + "print\"The indicated mean effective pressure = \",round(pmi,1),\"bar\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The brake power = 17.593 kW \n", + "The brake mean effective pressure = 7.32 bar\n", + "The brake thermal efficiency = 28.0 percent\n", + "The brake specific fuel consumption = 0.293 kg/kWh\n", + "The indicated power = 20.67 kW \n", + "The mechanical efficiency = 85.1 percent \n", + "The indicated mean effective pressure = 8.6 bar\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.5 page no: 523" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "d=0.15 #The diameter of the bore in m\n", + "L=0.16 #The length of the stroke in m\n", + "N=500 #The speed of the engine in rpm\n", + "mf=0.0475 #Fuel consumption in kg/min\n", + "CV=42000 #The calorific value in kJ/kg\n", + "w=400 #The tension on either side of the pulley in N\n", + "c=2.2 #Brake circumference in m\n", + "l=50 #Length of the indicator diagram in mm\n", + "ap=475 #Area of the positive loop of indicator diagram in mm**2\n", + "an=25 #Area of the negative loop of indicator diagram in mm**2\n", + "s=0.8333 #Spring constant in bar/mm\n", + "\n", + "#Calculations\n", + "import math\n", + "r=c/(2.0*math.pi)\n", + "T=w*r\n", + "bp=(2*math.pi*N*T)/(60.0*1000.0)\n", + "M=(ap-an)/l\n", + "imep=M*s\n", + "ip=(imep*10**5*L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*(1/1000.0))\n", + "nm=(bp/ip)*100\n", + "nb=((bp*60)/(mf*CV))*100\n", + "ni=((nb/100.0)/(nm/100.0))*100\n", + "bsfc=(mf*60)/bp\n", + "\n", + "#Output\n", + "print\"(a) The brake power = \",round(bp,3),\"kW\"\n", + "print \"(b) The indicated power = \",round(ip,3),\"kW\"\n", + "print\"(c) The mechanical efficiency = \",round(nm,0),\"percent\"\n", + "print\"(d) The brake thermal efficiency = \",round(nb,3)\n", + "print\"(e) The indicated thermal efficiency = \",round(ni,3)\n", + "print\"(f) The brake specific fuel consumption = \",round(bsfc,3),\" kg/kWh\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) The brake power = 7.333 kW\n", + "(b) The indicated power = 8.835 kW\n", + "(c) The mechanical efficiency = 83.0 percent\n", + "(d) The brake thermal efficiency = 22.055\n", + "(e) The indicated thermal efficiency = 26.573\n", + "(f) The brake specific fuel consumption = 0.389 kg/kWh\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.6 page no: 524" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "n=8 #Number of cylinders\n", + "d=0.08 #The diameter of the bore in m\n", + "L=0.1 #The length of the stroke in m\n", + "N=4500 #The speed of the engine in rpm \n", + "dy=0.55 #The dynamometer readings in m\n", + "w=40 #The weight of the dynamometer scale reading in kg\n", + "c=100 #Fuel consumption in cc\n", + "t=9.5 #Time taken for fuel consumption in s\n", + "CV=44000 #The calorific value of the fuel in kJ/kg\n", + "p=1 #The atmospheric air pressure in bar\n", + "T=300 #The atmospheric air temperature in K\n", + "ma=6 #Mass flow rate of air in kg/min\n", + "g=0.7 #Specific gravity of the fuel \n", + "Vc=65 #The clearance volume of each cylinder in cc\n", + "R=287 #Real gas constant in J/kgK\n", + "g=1.4 #Isentropic index\n", + "\n", + "#Calculations\n", + "import math\n", + "bp=(2*math.pi*N*dy*w*9.81)/(60.0*1000.0)\n", + "bmep=((bp*1000*60)/(L*(math.pi/4.0)*d**2*(N/2.0)*n))/10.0**5\n", + "mf=(c*g*3600)/(t*2.0*1000.0)\n", + "bsfc=(mf/bp)\n", + "bsac=(ma*60)/bp\n", + "a=bsac/bsfc\n", + "nb=((bp*3600)/(mf*CV))*100\n", + "Va=(ma*R*T)/(p*10.0**5)\n", + "Vs=(math.pi/4.0)*d**2*L*(N/2.0)*n\n", + "nv=(Va/Vs)*100\n", + "Vs1=((math.pi/4.0)*d**2*L)*10**6\n", + "cr=(Vs1+Vc)/Vc\n", + "na=(1-(1/cr)**(g-1))*100\n", + "re=((nb)/(na))*100\n", + "\n", + "#Output\n", + "print\"The brake power = \",round(bp,1),\"kW\" \n", + "print\"The brake mean effective pressure = \",round(bmep,3),\"bar\"\n", + "print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\"\n", + "print\"The brake specific air consumption = \",round(bsac,3),\"kg/kWh\"\n", + "print\"The air fuel ratio = \",round(a,2)\n", + "print\"The brake thermal efficiency = \",round(nb,3),\"percent\" \n", + "print\"The volumetric efficiency = \",round(nv,1),\"percent\"\n", + "print\"The relative efficiency = \",round(re,1),\"percent\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The brake power = 101.7 kW\n", + "The brake mean effective pressure = 6.744 bar\n", + "The brake specific fuel consumption = 0.261 kg/kWh\n", + "The brake specific air consumption = 3.54 kg/kWh\n", + "The air fuel ratio = 13.57\n", + "The brake thermal efficiency = 31.369 percent\n", + "The volumetric efficiency = 57.1 percent\n", + "The relative efficiency = 54.1 percent\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.7 page no: 526" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "n=6 #Number of cylinders\n", + "Do=0.03 #Orifice diameter in m\n", + "Cd=0.6 #Coefficient of discharge \n", + "H=0.14 #Pressure drop across the orifice\n", + "d=0.1 #The diameter of the bore in m\n", + "L=0.11 #The length of the stroke in m\n", + "W=540 #Brake load in N\n", + "N=2500 #Engine speed in rpm\n", + "ch=83/17 #C/H ratio by mass\n", + "p=1 #Ambient pressure in bar\n", + "t=18 #Time taken for fuel consumption in s\n", + "f=100 #The amount of fuel consumption in cc\n", + "T=300.0 #Ambient air temperature in K\n", + "df=780 #The density of the fuel in kg/m**3\n", + "R=287.0 #Real gas constant in J/kgK\n", + "g=9.81 #Gravitational force constant in m/s**2\n", + "dhg=13600 #Density of Hg in kg/m**3\n", + "\n", + "#Calculations\n", + "import math\n", + "da=(p*10**5)/(R*T)\n", + "Va=(Cd*(math.pi/4.0)*Do**2*(2*g*H*(dhg/da))**(1/2.0))\n", + "Vs=(math.pi/4.0)*d**2*L*(N/(2.0*60.0))*n\n", + "nv=(Va/Vs)*100\n", + "bp=(W*N)/(20000.0)\n", + "bmep=((bp*1000)/(L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*n))/10.0**5\n", + "T=(60*bp*1000)/(2.0*math.pi*N)\n", + "mf=(f/18.0)*(780/1000.0)*(1/1000.0)*3600\n", + "bsfc=mf/bp\n", + "so=(0.83*(32/12.0))+(0.17*(8/1.0))\n", + "sa=so/bsfc\n", + "maa=Va*da\n", + "af=(maa*3600)/mf\n", + "pea=((af-sa)/sa)*100\n", + "\n", + "#Output\n", + "print\"The volumetric efficiency = \",round(nv,3),\"percent\" \n", + "print\"The brake mean effective pressure = \",round(bmep,3),\"bar\" \n", + "print\"The brake power = \",bp,\"kW\" \n", + "print\"The Torque = \",round(T,3),\"Nm\"\n", + "print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\" \n", + "print\"The percentage of excess air = \",round(pea,1),\"percent\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The volumetric efficiency = 70.433 percent\n", + "The brake mean effective pressure = 6.25 bar\n", + "The brake power = 67.5 kW\n", + "The Torque = 257.831 Nm\n", + "The brake specific fuel consumption = 0.231 kg/kWh\n", + "The percentage of excess air = 31.9 percent\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.8 page no: 528" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "d=0.2 #The diameter of bore in m\n", + "L=0.3 #The length of the stroke in m\n", + "r=5.5 #The compression ratio of the engine\n", + "N=400 #The speed of the engine in rpm\n", + "imep=4.5 #The indicative mean effective pressure in bar\n", + "a=6 #Air to gas by volume \n", + "CV=12000 #The calorific value of the gas in kJ/m**3\n", + "T=340 #The temperature at the beginning of the compression stroke in K\n", + "p=0.97 #The pressure at the beginning of the compression stroke in bar\n", + "g=1.4 #Adiabatic index\n", + "\n", + "#Calculations\n", + "import math\n", + "Vs=(math.pi/4.0)*d**2*L\n", + "Vc=Vs/(r-1)\n", + "V=Vs+Vc\n", + "Vg=V/7.0\n", + "Vntp=((p*Vg)/T)*(273/1.013)\n", + "Q=Vntp*CV*(N/(2.0*60.0))\n", + "ip=(imep*10**5*L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*(1/1000.0))\n", + "ni=(ip/Q)*100\n", + "na=(1-(1/r)**(g-1))*100\n", + "nr=(ni/na)*100\n", + "\n", + "#Output\n", + "print\"The indicated power = \",round(ip,2),\"kW\" \n", + "print\"The thermal efficiency = \",round(ni,1),\"percent\" \n", + "print\"The relative efficiency = \",round(nr,1),\"percent\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The indicated power = 14.14 kW\n", + "The thermal efficiency = 27.9 percent\n", + "The relative efficiency = 56.5 percent\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.9 page no: 529" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "n=6.0 #Number of cylinder\n", + "bp=130.0 #Brake power in kW\n", + "N=1800.0 #The speed of the engine in rpm \n", + "CV=42000.0 #The calorific value of the fuel in kJ/kg\n", + "C=86.0 #The composition of carbon in the fuel in percent\n", + "H=13.0 #The composition of Hydrogen in the fuel in percent\n", + "NC=1.0 #The non combustibles present in the fuel in percent\n", + "na=85.0 #The absolute volumetric efficiency in percent\n", + "ni=38.0 #The indicated thermal efficiency in percent\n", + "nm=80.0 #The mechanical efficiency in percent\n", + "ac=110.0 #The excess consumption of air in percent\n", + "sb=1.2 #The stroke to the bore ratio \n", + "da=1.3 #The density of air in kg/m**3\n", + "\n", + "#Calculations \n", + "import math\n", + "saf=(((C/100.0)*(32/12.0))+((H/100.0)*(8/1.0)))*(1/0.23)\n", + "aaf=saf*(1+1.1)\n", + "Ma=(0.23*32)+(0.77*28)\n", + "a=(C/100)/12.0\n", + "b=(H/100.0)/2.0\n", + "x=aaf/Ma\n", + "c=(0.21*x)-a-(b/2.0)\n", + "d1=0.79*x\n", + "ip=bp/(nm/100.0)\n", + "mf=ip/((ni/100.0)*CV)\n", + "ma=mf*aaf\n", + "Va=ma/da\n", + "Vs=Va/(na/100.0)#The swept volume per second in m**3/s\n", + "d=((Vs*(4/math.pi)*(1/1.2)*((2*60)/N)*(1/n))**(1/3.0))*1000\n", + "L=1.2*d\n", + "T=a+c+d1\n", + "CO2=(a/T)*100\n", + "O2=(c/T)*100\n", + "N2=(d1/T)*100\n", + "\n", + "#Output\n", + "print\"The volumetric composition of dry exhaust gas :\" \n", + "print\"1) CO2 = \",round(a,2),\"kmol\",\"and\" \n", + "print\"volume = \",round(CO2,2),\"percent\" \n", + "print\"2) O2 = \",round(c,3),\"kmol\",\"and\" \n", + "print\"volume = \",round(O2,3),\"percent\"\n", + "print\"3) N2 = \",round(d1,3),\"kmol\",\"and\" \n", + "print\"volume = \",round(N2,3),\"percent\"\n", + "print\"The bore of the engine = \",round(d,0),\"mm\" \n", + "print\"The stroke of the engine = \",round(L,1),\"mm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The volumetric composition of dry exhaust gas :\n", + "1) CO2 = 0.07 kmol and\n", + "volume = 7.03 percent\n", + "2) O2 = 0.117 kmol and\n", + "volume = 11.456 percent\n", + "3) N2 = 0.831 kmol and\n", + "volume = 81.517 percent\n", + "The bore of the engine = 149.0 mm\n", + "The stroke of the engine = 178.8 mm\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.10 page no: 531" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "d=0.18 #The diameter of the cylinder in m\n", + "L=0.24 #The length of the stroke in m\n", + "t=30.0 #Duration trail in min \n", + "N=9000.0 #Number of revolutions \n", + "Ne=4450.0 #Total number of explosions\n", + "pmi=5.35 #Gross imep in bar\n", + "pp=0.35 #Pumping imep in bar\n", + "W=40.0 #Net load on brake wheel in kg\n", + "dd=0.96 #Diameter of the brake wheel drum in m\n", + "dr=0.04 #Diameter of the rope in m\n", + "V=2.6 #Volume of gas used in m**3\n", + "pg=136.0 #pressure of gas in mmof Hg\n", + "dg=0.655 #The density of gas in kg/m**3\n", + "T=290.0 #The ambient temperature of air in K\n", + "CV=19000.0 #The calorific value of the fuel in kJ/m**3\n", + "ta=40.0 #Total air used in m**3\n", + "p=720.0 #Pressure of air in mm of Hg\n", + "Te=340.0 #Temperature of exhaust gas in degree centigrade \n", + "Cpg=1.1 #Specific heat of gas in kJ/kgK\n", + "C=80.0 #Cooling water circulated in kg\n", + "Tr=30.0 #Rise in temperature of cooling water in degree centigrade \n", + "R=287.0 #Real gas constant in J/kgK\n", + "\n", + "#Calculations\n", + "#import math\n", + "ip=(pmi-pp)*10**5*L*(math.pi/4.0)*d**2*(Ne/(30.0*60.0))*(1/1000.0)\n", + "bp=(math.pi*(N/(30.0*60.0))*W*9.81*(dd+dr)*(1/1000.0))\n", + "pgs=760+(pg/13.6)\n", + "Vg=((pgs*V)/290.0)*(273/760.0)\n", + "Q=(Vg*CV)/30.0\n", + "Qbp=bp*60\n", + "Qc=(C/t)*4.18*Tr\n", + "Va=(((p*ta)/T)*(273/760.0))/30.0\n", + "da=(1.013*10**5)/(R*273)\n", + "ma=Va*da\n", + "mg=(Vg/30)*dg\n", + "me=ma+mg\n", + "Qe=me*Cpg*(Te-(T-273))\n", + "Qu=Q-(Qe+Qc+Qbp)\n", + "nm=(bp/ip)*100\n", + "ni=((ip*60)/Q)*100 \n", + "x=((Qbp/1571.0)*100)\n", + "y=((Qc/1571.0)*100)\n", + "z=((Qe/1571.0)*100)\n", + "k=((Qu/1571.0)*100)\n", + "Qf=Qbp+Qc+Qe+Qu\n", + "\n", + "#Output\n", + "print Qe\n", + "print\" HEAT BALANCE SEAT\"\n", + "\n", + "print \" \\nHeat input kj/min % heat expenditure Kj/min %\"\n", + "print\"--------------------------------------------------------------------------------------------------\"\n", + "print\"heat supplied by fuel \",round(Q,0),\" 100 (a)Heat in bp \", round(Qbp,1),\" \",round(x,1)\n", + "print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,1)\n", + "print\" (c) Heat to exhaust gases \",round(Qe,0),\" \",round(z,0)\n", + "print\" (d)unaccounted losses \",round(Qu,0),\" \",round(k,1)\n", + "print\"Total \",round(Q,0),\" 100 total \",round(Qf,0), \" 100.0\"\n", + " \n", + "print\"\\nMechanical efficiency is\",round(nm,2),\"percent\"\n", + "print\"Thermal efficiency is\",round(ni,1),\"percent\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "565.475307496\n", + " HEAT BALANCE SEAT\n", + " \n", + "Heat input kj/min % heat expenditure Kj/min %\n", + "--------------------------------------------------------------------------------------------------\n", + "heat supplied by fuel 1571.0 100 (a)Heat in bp 369.8 23.5\n", + " (b)Heat loss to cooling tower 334.0 21.3\n", + " (c) Heat to exhaust gases 565.0 36.0\n", + " (d)unaccounted losses 301.0 19.1\n", + "Total 1571.0 100 total 1571.0 100.0\n", + "\n", + "Mechanical efficiency is 81.65 percent\n", + "Thermal efficiency is 28.8 percent\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.11 page no: 533" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given \n", + "bp=30 #The brake power in kw\n", + "mf=10 #Mass flow rate of fuel in kg/h\n", + "CV=42000 #Calorific value of the fuel in kJ/kg\n", + "mw=9 #Mass flow rate of water in kg/min\n", + "Tr=60 #Rise in temperature of the cooling water in degree centigrade\n", + "mwe=9.5 #Mass flow rate of water through exhaust gas calorimeter in kg/min\n", + "Tc=40 #Rise in temperature when passing through calorimeter in degree centigrade\n", + "Te=80 #Temperature of exhaust gas leaving the calorimeter in degree centigrade\n", + "a=20 #Air fuel ratio\n", + "T=17 #Ambient temperature in degree centigrade\n", + "Cpw=4.18 #Specific heat of water in kJ/kgK\n", + "Cpg=1 #Mean specific heat of gas in kJ/kgK\n", + "\n", + "#Calculations\n", + "Qf=(mf/60.0)*CV \n", + "Qbp=bp*60\n", + "Qc=mw*Cpw*Tr\n", + "mg=(mf/60.0)+(mf/60.0)*a\n", + "Qe=(mwe*Cpw*Tc)+(mg*Cpg*(Te-T))\n", + "Qu=Qf-(Qbp+Qc+Qe)\n", + "x=((Qbp/Qf))*100\n", + "y=(Qc/Qf)*100\n", + "z=(Qe/Qf)*100\n", + "k=(Qu/Qf)*100\n", + "\n", + "#Output\n", + "print\" HEAT BALANCE SEAT\"\n", + "print \"\\n Heat input kj/min % heat expenditure Kj/min %\"\n", + "print\"--------------------------------------------------------------------------------------------------\"\n", + "print\"heat supplied by fuel \",Qf,\" 100 (a)Heat in bp \", Qbp,\" \",round(x,0)\n", + "print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,0)\n", + "print\" (c) Heat to exhaust gases \",round(Qe,0),\" \",round(z,0)\n", + "print\" (d)unaccounted losses \",round(Qu,0),\" \",round(k,0)\n", + "print\"Total \",Qf,\" 100 total \",Qf, \" 100\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " HEAT BALANCE SEAT\n", + "\n", + " Heat input kj/min % heat expenditure Kj/min %\n", + "--------------------------------------------------------------------------------------------------\n", + "heat supplied by fuel 7000.0 100 (a)Heat in bp 1800 26.0\n", + " (b)Heat loss to cooling tower 2257.0 32.0\n", + " (c) Heat to exhaust gases 1809.0 26.0\n", + " (d)unaccounted losses 1134.0 16.0\n", + "Total 7000.0 100 total 7000.0 100\n" + ] + } + ], + "prompt_number": 85 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 16.12 page no: 534" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#given\n", + "n=4.0 #Number of cylinders\n", + "d=0.085 #The diameter of the bore m\n", + "L=0.095 #The length of the stroke in m\n", + "tr=0.35 #Torque radius in m\n", + "N=3000.0 #The speed of the engine in rpm\n", + "w=430.0 #Net brake load in N\n", + "w1=300.0 #Net brake load produced at the same speed by three cylinders in N\n", + "mf=0.24 #The mass flow rate of fuel in kg/min\n", + "CV=44000.0 #The calorific value of the fuel in kJ/kg\n", + "mw=65.0 #Mass flow rate of water in kg/min\n", + "Tw=12.0 #The rise in temperature in degree centigrade\n", + "a=15.0 #The air fuel ratio \n", + "Te=450.0 #The temperature of the exhaust gas in degree centigrade \n", + "Ta=17.0 #Ambient temperature in degree centigrade\n", + "p=76.0 #Barometric pressure in cm of Hg\n", + "H=15.5 #The proportion of hydrogen by mass in the fuel in percent\n", + "Cpe=1.0 #The mean specific heat of dry exhaust gas in kJ/kgK\n", + "Cps=2.0 #The specific heat of super heated steam in kJ/kgK\n", + "Cpw=4.18 #The specific heat of water in kJ/kgK\n", + "Ts=100.0 #At 76 cm of Hg The temperature in degree centigrade \n", + "hfg=2257 #The Enthalpy in kJ/kg\n", + "R=287.0 #Real gas cons tant in J/kgK\n", + "\n", + "#Calculations\n", + "import math\n", + "bp=(2*math.pi*N*w*tr)/(60.0*1000.0)\n", + "bp1=(2*math.pi*N*w1*0.35)/(60.0*1000.0)\n", + "ip=bp-bp1\n", + "ip1=n*ip\n", + "imep=((ip1*60*1000)/(L*(math.pi/4.0)*d**2*(N/2.0)*n))/10.0**5\n", + "ni=((ip1*60)/(mf*CV))*100\n", + "bsfc=(mf*60)/bp\n", + "Vs=(math.pi/4.0)*d**2*L*(N/2.0)*n\n", + "ma=a*mf\n", + "da=(1*10**5)/(R*(Ta+273))\n", + "Va=ma/da\n", + "nv=(Va/Vs)*100\n", + "Qf=mf*CV\n", + "Qbp=bp*60\n", + "Qc=mw*Cpw*Tw\n", + "mv=9*(H/100.0)*mf\n", + "me=ma+mf-mv\n", + "Qe=me*Cpe*(Te-Ta)\n", + "Qs=(mv*((Cpw*(Ts-Ta))+hfg+(Cps*(Te-Ts))))\n", + "Qu=Qf-(Qbp+Qc+Qe+Qs)\n", + "x=(Qbp/Qf)*100\n", + "y=(Qc/Qf)*100\n", + "z=(Qe/Qf)*100\n", + "k=(Qs/Qf)*100\n", + "l=(Qu/Qf)*100 \n", + "\n", + "#Output\n", + "print\" HEAT BALANCE SEAT\"\n", + "print \" Heat input kj/min % heat expenditure Kj/min %\"\n", + "print\"----------------------------------------------------------------------------------------------------\"\n", + "print\"heat supplied by fuel \",Qf,\" 100 (a)Heat in bp \", Qbp,\" \",round(x,2)\n", + "print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,2)\n", + "print\" (c) Heat to dry exhaust gases \",round(Qe,0),\" \",round(z,1)\n", + "print\" (d)Heat loss in steam \",round(Qs,0),\" \",round(k,1)\n", + "print\" (e)unaccounted losses \",round(Qu,0),\" \",round(l,2)\n", + "print\"Total \",Qf,\" 100 total \",Qf, \" 100\"\n", + "\n", + "print\"\\nimpep \",round(imep,2),\"bar\"\n", + "print\"Thermal efficiency \",round(ni,1),\"percent\"\n", + "print\"bsfc=\",round(bsfc,4),\"kg/kwh\"\n", + "print\"Volumetric efficiency=\",round(nv,1),\"percent\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " HEAT BALANCE SEAT\n", + " Heat input kj/min % heat expenditure Kj/min %\n", + "----------------------------------------------------------------------------------------------------\n", + "heat supplied by fuel 10560.0 100 (a)Heat in bp 2836.85816619 26.86\n", + " (b)Heat loss to cooling tower 3260.0 30.87\n", + " (c) Heat to dry exhaust gases 1518.0 14.4\n", + " (d)Heat loss in steam 1106.0 10.5\n", + " (e)unaccounted losses 1839.0 17.41\n", + "Total 10560.0 100 total 10560.0 100\n", + "\n", + "impep 10.61 bar\n", + "Thermal efficiency 32.5 percent\n", + "bsfc= 0.3046 kg/kwh\n", + "Volumetric efficiency= 92.6 percent\n" + ] + } + ], + "prompt_number": 21 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit