From 400c5d4d1987e66daeb868c8de422d666f959e7f Mon Sep 17 00:00:00 2001 From: Trupti Kini Date: Tue, 3 Jan 2017 23:30:39 +0600 Subject: Added(A)/Deleted(D) following books A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_3ptASMI.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_4wHa84D.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_9JxFKFd.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_C7pfw6B.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_GqqK7m2.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_H0c7r3u.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_Iq2SYN6.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_KTU5lgY.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_O3VudAg.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_UKQHPIE.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_ZbMx9hO.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_dqq0jBY.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_mJo3HTQ.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_tWbQ8Pq.ipynb A A_Textbook_of_Electrical_Technology_AC_and_DC_Machines_by_A_K_Theraja_B_L_Thereja/chap_wCDB06c.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch1_voXCiZP.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch2_839zjBr.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch3_JtKdjpi.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch4_h6Jwto8.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch5_2XUAsbf.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/Ch6_8Xtm119.ipynb A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_65JiggP.png A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_KYhBgvr.png A Advanced_Measurements_And_Instrumentation_by_A._K._Sawhney/screenshots/Screenshot_from_2_OJGeNYs.png A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_10_Properties_Of__kgiORTS.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_11_Steam_Boilers_TQuXuTV.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_13_Steam_Engines_zTSDNSc.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_14_Air_Standard_C_m7SxTPj.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_2_Properties_Of_M_xMKkegG.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_5_Metrology_xHgz5kr.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_7_Fluid_Mechanics_VydgOYT.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/Chapter_9__Laws_Of_Thermo_EMQgMuo.ipynb A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/screenshots/chapter10_iDXA5E5.png A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/screenshots/chapter14_zNTXzAs.png A Basic_mechanical_engineering_by_Basant_Agrawal_,_C.M_Agrawal/screenshots/chapter5_Ank30Hw.png A Electrical_and_Electronic_Systems_by_Neil_Storey/README.txt A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter2_COfrarn.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter3_7iK58pH.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter4_YZTImEN.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter6_VZhkm5E.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter8_Bt8FCnc.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter9_TOCkwb3.ipynb A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/Chapter10.png A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter6_Q3tBrTp.png A Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/screenshots/chapter7_qVshgvy.png A sample_notebooks/kumargugloth/Chapter1_wopEYRj.ipynb --- .../Chapter7_2hkovpj.ipynb | 280 +++++++++++++++++++++ 1 file changed, 280 insertions(+) create mode 100644 Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb (limited to 'Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb') diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb new file mode 100644 index 00000000..d65c95f3 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb @@ -0,0 +1,280 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a61692019b8140a36f6ac02790d0dad90729cb0b28691dad1652c231a1bf0a41" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter7-Centrifugal Pumps,Fans and Compressors\n" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex1-pg216" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the\n", + "\n", + "##function to calculate blade cavitation coefficient\n", + "\n", + "##given data\n", + "Q = 25;##flow rate in dm^3/s\n", + "omega = 1450;##rotational speed in rev/min\n", + "omega_ss = 3;##max. suction specific speed in rad/sec\n", + "r = 0.3;##inlet eye radius ratio\n", + "g = 9.81;##in m/s^2\n", + "\n", + "##Calculations\n", + "k = 1.-(r**2);\n", + "sigmab = 0.3;##initial guess\n", + "d = (sigmab**2)*(1. + sigmab)- (((3.42*k)**2)/(omega_ss**4));\n", + "i = 0;\n", + "if sigmab>0:\n", + "\tsigmab = sigmab - 0.0001;\n", + "elif sigmab<0:\n", + "\tsigmab = sigmab + 0.0001;\n", + "\n", + "phi = (sigmab/(2.*(1.+sigmab)))**0.5;\n", + "rs1 = ((Q*10**-3.)/(math.pi*k*(omega*math.pi/30.)*phi))**(1./3.);\n", + "ds1 = 2.*rs1;\n", + "cx1 = phi*(omega*math.pi/30.)*rs1;\n", + "Hs = (0.75*sigmab*cx1**2)/(g*phi**2);\n", + "\n", + "##Results\n", + "print'%s %.2f %s'%('(i)The blade cavitation coefficient = ',sigmab,'');\n", + "print'%s %.2f %s %.2f %s '%('\\n (ii)The shroud radius at the eye = ',rs1,' m' and '\\n The required diameter of the eye = ',ds1*10**3,'mm');\n", + "print'%s %.2f %s'%('\\n (iii)The eye axial velocity = ',cx1,' m/s');\n", + "print'%s %.2f %s'%('\\n (iv)The NPSH = ',Hs,' m');\n", + "\n", + "#asnwer is wrong due to round off error" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)The blade cavitation coefficient = 0.30 \n", + "\n", + " (ii)The shroud radius at the eye = 0.06 \n", + " The required diameter of the eye = 110.70 mm \n", + "\n", + " (iii)The eye axial velocity = 2.85 m/s\n", + "\n", + " (iv)The NPSH = 1.62 m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex2-pg220" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the\n", + "\n", + "##given data\n", + "alpha1 = 30.;##prewhirl in deg\n", + "hs = 0.4;##inlet hub-shrub radius ratio\n", + "Mmax = 0.9;##max Mach number\n", + "Q = 1;##air mass flow in kg/s\n", + "p01 = 101.3;##stagnation pressure in kPa\n", + "T01 = 288.;##stagnation temperature in K\n", + "gamma = 1.4;\n", + "Rg = 287.;##in J/(kgK)\n", + "\n", + "##Calculationsasza\n", + "beta1 = 49.4;##in deg\n", + "f = 0.4307;\n", + "a01 = math.sqrt(gamma*Rg*T01);\n", + "rho01 = p01*1000./(Rg*T01);\n", + "k = 1-(hs**2);\n", + "omega = (math.pi*f*k*rho01*a01**3)**0.5;\n", + "N = (omega*60./(2.*math.pi));\n", + "rho1 = rho01/(1. + 0.2*(Mmax*math.cos(beta1*math.pi/180.))**2)**2.5;\n", + "cx = ((omega**2.)/(math.pi*k*rho1*(math.tan(beta1*math.pi/180.) + math.tan(alpha1*math.pi/180.))**2.))**(1/3.);\n", + "rs1 = (1./(math.pi*rho1*cx*k))**0.5;\n", + "\n", + "ds1 = 2.*rs1;\n", + "U = omega*rs1;\n", + "\n", + "##Results\n", + "print'%s %.2f %s %.2f %s '%('(i)The rotational speed of the impeller = ',omega,' rad/s'and 'N = ',N,' rev/min.');\n", + "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet static density downstream of the guide vanes at the shroud = ',rho1,' kg/m^3.'and'\\n The axial velocity = ',cx,' m/s.');\n", + "print'%s %.2f %s %.2f %s '%('\\n (iii)The inducer tip diameter = ',ds1*100,' cm'and '\\n U = ',U,' m/s.');\n", + "\n", + "##there are small errors in the answers given in textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i)The rotational speed of the impeller = 7404.94 N = 70711.94 rev/min. \n", + "\n", + " (ii)The inlet static density downstream of the guide vanes at the shroud = 1.04 \n", + " The axial velocity = 187.38 m/s. \n", + "\n", + " (iii)The inducer tip diameter = 8.83 \n", + " U = 326.81 m/s. \n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex3-pg228" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the\n", + "\n", + "##given data\n", + "Q = 0.1;##in m^3/s\n", + "N = 1200.;##rotational speed in rev/min\n", + "beta2_ = 50.;##in deg\n", + "D = 0.4;##impeller external diameter in m\n", + "d = 0.2;##impeller internal diameter in m\n", + "b2 = 31.7;##axial width in mm\n", + "eff = 0.515;##diffuser efficiency\n", + "H = 0.1;##head losses\n", + "De = 0.15;##diffuser exit diameter\n", + "A = 0.77;\n", + "B = 1.;\n", + "g = 9.81;\n", + "\n", + "##Calculations\n", + "U2 = math.pi*N*D/60.;\n", + "cr2 = Q/(math.pi*D*b2/1000.);\n", + "sigmaB = (A - H*math.tan(beta2_*math.pi/180.))/(B - H*math.tan(beta2_*math.pi/180.));\n", + "ctheta2 = sigmaB*U2*(1.-H*math.tan(beta2_*math.pi/180.));\n", + "Hi = U2*ctheta2/g;\n", + "c2 = math.sqrt(cr2**2 + ctheta2**2);\n", + "c3 = 4.*Q/(math.pi*De**2);\n", + "HL = 0.1*Hi + 0.485*((c2**2)-(c3**2))/(2.*g) + (c3**2.)/(2.*g);\n", + "H = Hi - HL;\n", + "eff_hyd = H/Hi;\n", + "\n", + "##Results\n", + "print'%s %.2f %s'%('The slip factor = ',sigmaB,'');\n", + "print'%s %.2f %s'%('\\n The manometric head = ',H,' m.');\n", + "print'%s %.2f %s'%('\\n The hydraulic efficiency = ',eff_hyd*100,' percentage.');\n", + "\n", + "##there is a very small error in the answer given in textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The slip factor = 0.74 \n", + "\n", + " The manometric head = 30.11 m.\n", + "\n", + " The hydraulic efficiency = 71.84 percentage.\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex4-pg235" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#calculate the\n", + "\n", + "##given data\n", + "T01 = 22.;##stagnation temperature in degC\n", + "Z = 17.;##number of vanes\n", + "N = 15000.;##rotational speed in rev/min\n", + "r = 4.2;##stagnation pressure ratio between diffuser and impeller\n", + "eff_ov = 0.83;##overall efficiency\n", + "mdot = 2;##mass flow rate in kg/s\n", + "eff_m = 0.97;##mechanical efficiency\n", + "rho2 = 2.;##air density at impeller outle in kg/m^3\n", + "gamma = 1.4;\n", + "R = 0.287;##in kJ/(kg.K)\n", + "b2 = 11.;##axial width at the entrance to the diffuser in mm\n", + "\n", + "##Calculations\n", + "Cp = gamma*R*1000./(gamma-1.);\n", + "sigmaS = 1 - 2./Z;\n", + "U2 = math.sqrt(Cp*(T01+273.)*((r)**((gamma-1.)/gamma) -1.)/(sigmaS*eff_ov));\n", + "omega = N*math.pi/30.;\n", + "rt = U2/omega;\n", + "Wdot_act = mdot*sigmaS*(U2**2)/(eff_m);\n", + "cr2 = mdot/(rho2*2.*math.pi*rt*b2/1000.);\n", + "ctheta2 = sigmaS*U2;\n", + "c2 = math.sqrt(ctheta2**2 +cr2**2);\n", + "delW = sigmaS*U2**2;\n", + "T2 = T01+273.+(delW - 0.5*c2**2)/Cp;\n", + "M2 = c2/math.sqrt(gamma*R*1000.*T2);\n", + "\n", + "##Results\n", + "print'%s %.2f %s'%('Absolute mach number, M2 = ',M2,'');\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Absolute mach number, M2 = 1.01 \n" + ] + } + ], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit