From 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d Mon Sep 17 00:00:00 2001 From: kinitrupti Date: Fri, 12 May 2017 18:53:46 +0530 Subject: Removed duplicates --- Engineering_Physics_by_P._V._Naik/Chapter7.ipynb | 582 +++++++++++++++++++++++ 1 file changed, 582 insertions(+) create mode 100755 Engineering_Physics_by_P._V._Naik/Chapter7.ipynb (limited to 'Engineering_Physics_by_P._V._Naik/Chapter7.ipynb') diff --git a/Engineering_Physics_by_P._V._Naik/Chapter7.ipynb b/Engineering_Physics_by_P._V._Naik/Chapter7.ipynb new file mode 100755 index 00000000..36caeba7 --- /dev/null +++ b/Engineering_Physics_by_P._V._Naik/Chapter7.ipynb @@ -0,0 +1,582 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:604dfd31225e3c2fe12afc104ed18461bd1bcabd558389f5cc69df386ba9091d" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "7: Motion of a charged particle" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.1, Page number 132" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge of the electron(c)\n", + "V=18; #potential difference(kV)\n", + "m=9.1*10**-31; #mass of the electron(kg)\n", + "\n", + "#Calculation \n", + "K=e*V*10**3; #Kinetic energy(J)\n", + "v=math.sqrt((2*e*V*10**3)/m); #speed of electron(m/s)\n", + "\n", + "#Result\n", + "print \"The kinetic energy of electron is\",K*10**16,\"*10**-16 J\"\n", + "print \"Speed of the electron is\",round(v/10**7,3),\"*10**7 m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The kinetic energy of electron is 28.8 *10**-16 J\n", + "Speed of the electron is 7.956 *10**7 m/s\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.2, Page number 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "vx=4*10**6; #velocity along x-axis(m/s)\n", + "E=1500; #electric field strength(N/C)\n", + "l=0.07; #length in y-axis(m)\n", + "q=1.6*10**-19; #charge of electron(c)\n", + "\n", + "#Calculation \n", + "y=(-q*E*(l**2))/(2*m*(vx**2))*10**2; #vertical displacement of electron(cm)\n", + "\n", + "#Result\n", + "print \"The vertical displacement of electron when it leaves the electric field is\",round(y,3),\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The vertical displacement of electron when it leaves the electric field is -4.038 cm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.3, Page number 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "u=5*10**5; #velocity(m/s)\n", + "m=1.67*10**-27; #mass of proton(kg)\n", + "q=1.6*10**-19;\n", + "E=500; #electric field(N/C)\n", + "theta=42; #angle(degrees)\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle(radian)\n", + "t=((u*m*math.sin(theta))/(q*E))*10**6; #time required for the proton(micro s)\n", + "\n", + "#Result\n", + "print \"The time required for the proton is\",round(t,2),\"micro s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The time required for the proton is 6.98 micro s\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.4, Page number 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=1.67*10**-27; #mass of proton(kg)\n", + "q=1.6*10**-19;\n", + "B=0.36; #magnetic field(T)\n", + "R=0.2; #radius(m)\n", + "\n", + "#Calculation \n", + "v=(q*B*R)/m; #orbital speed of proton(m/s)\n", + "\n", + "#Result\n", + "print \"The orbital speed of proton is\",round(v/10**6,1),\"*10**6 m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The orbital speed of proton is 6.9 *10**6 m/s\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.5, Page number 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "v=2*10**6; #speed(m/s)\n", + "theta=30; #angle at which proton enters at the origin of coordinate system(degrees)\n", + "B=0.3; #magnetic field(T)\n", + "m=1.67*10**-27; #mass of proton(kg)\n", + "q=1.6*10**-19;\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle(radian)\n", + "vp=v*math.sin(theta); #v(perpendicular component)\n", + "vpa=v*math.cos(theta); #v(parallel component)\n", + "p=(vpa*2*math.pi*m)/(q*B); #pitch of the helix described by the proton\n", + "R=((m*vp)/(q*B))*10**2; #radius of the trajectory\n", + "\n", + "#Result\n", + "print \"the pitch of the helix is\",round(p,2),\"m\"\n", + "print \"the radius of trajectory is\",round(R,2),\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the pitch of the helix is 0.38 m\n", + "the radius of trajectory is 3.48 cm\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.6, Page number 133" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=25; #deflecting voltage(V)\n", + "l=0.03; #length of deflecting planes(m)\n", + "d=0.75; #distance between 2 deflecting plates(cm)\n", + "Va=800; #final anode voltage(V)\n", + "D=0.2; #distance between the screen and the plates(m)\n", + "e=1.6*10**-19;\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "\n", + "#Calculation \n", + "y=(((V*l)/(2*d*Va))*(D+(l/2)))*10**4; #displacement produced(cm)\n", + "a=((V*l)/(2*d*Va))*10**2;\n", + "alpha=math.atan(a); #angle made by the beam with the axis(radian)\n", + "alpha1=alpha*180/math.pi; #angle(degrees)\n", + "v=((math.sqrt((2*e*Va)/m))/math.cos(alpha)); #velocity of electron(v)\n", + "\n", + "#Result\n", + "print \"the displacement produced is\",round(y,2),\"cm\"\n", + "print \"the angle made by the beam with the axis is\",round(alpha1,2),\"degrees\"\n", + "print \"velocity of electrons is\",round(v/10**7,2),\"*10**7 m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the displacement produced is 1.34 cm\n", + "the angle made by the beam with the axis is 3.58 degrees\n", + "velocity of electrons is 1.68 *10**7 m/s\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.7, Page number 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19;\n", + "B=5*10**-5; #magnetic field(Wb/m**2)\n", + "l=0.04; #length of magnetic field along the axis(m)\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "D=0.25; #distance of the screen from the field(m)\n", + "Va=600; #final anode voltage(V)\n", + "\n", + "#Calculation \n", + "y=(((e*B*l)/m)*math.sqrt(m/(2*e*Va))*(D+(l/2)))*10**2; #displacement of the electron(cm)\n", + "\n", + "#Result\n", + "print \"the displacement of the electron beam spot on the screen is\",round(y,2),\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the displacement of the electron beam spot on the screen is 0.65 cm\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.8, Page number 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=2.5*10**4; #electric field(V/m)\n", + "B=0.18; #magnetic field(T)\n", + "B1=0.22; #magnetic field in the main chamber(T)\n", + "m2=13; #mass number of carbon(kg)\n", + "m1=12; #mass number of carbon(kg)\n", + "e=1.6*10**-9;\n", + "q=1.67*10**-27;\n", + "\n", + "#Calculation \n", + "v=E/B; #velocity of particles(m/s)\n", + "s=((2*v*(m2-m1)*q)/(e*B1))*10**12; #seperation on photographic plate(cm)\n", + "\n", + "#Result\n", + "print \"the seperation on photographic plate is\",round(s,3),\"cm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the seperation on photographic plate is 1.318 cm\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.9, Page number 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "v=5.6*10**6; #speed of the electron(m/s)\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "e=1.6*10**-19;\n", + "s=0.03; #distance travelled(m)\n", + "\n", + "#Calculation \n", + "E=(m*(v)**2)/(2*e*s); #intensity of electric field(N/C)\n", + "\n", + "#Result\n", + "print \"The intensity of electric field is\",round(E),\"N/C\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The intensity of electric field is 2973.0 N/C\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.10, Page number 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "v=5*10**7;\n", + "B=0.4; #magnetic field(T)\n", + "r=0.711*10**-3; #radius of the circle(m)\n", + "\n", + "#Calculation \n", + "Q=v/(B*r); #charge to mass ratio(C/kg)\n", + "\n", + "#Result\n", + "print \"The charge to mass ratio is\",round(Q/10**10,2),\"*10**10 C/kg\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The charge to mass ratio is 17.58 *10**10 C/kg\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.11, Page number 135" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "v=3*10**7; #speed of electron(m/s)\n", + "R=0.05; #radius of the circle(m)\n", + "q=1.6*10**-31;\n", + "\n", + "#Calculation \n", + "B=((m*v)/(q*R))*10**-9; #magnetic field(mT)\n", + "\n", + "#Result\n", + "print \"The magnetic field to bend a beam is\",round(B,1),\"mT\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic field to bend a beam is 3.4 mT\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.12, Page number 135" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "m=9.1*10**-31; #mass of electron(kg)\n", + "q=1.6*10**-19;\n", + "t=8*10**-9; #time(ns)\n", + "\n", + "#Calculation \n", + "B=(2*math.pi*m*500)/(q*t); #magnetic field(T)\n", + "\n", + "#Result\n", + "print \"The magnetic field is\",round(B,2),\"T\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic field is 2.23 T\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 7.13, Page number 135" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "v=9.15*10**7; #cyclotron frequency of proton(Hz)\n", + "m=1.67*10**-27; #mass of proton(kg)\n", + "q=1.6*10**-19;\n", + "\n", + "#Calculation \n", + "B=(2*math.pi*v*m)/q; #magnetic field(T)\n", + "\n", + "#Result\n", + "print \"The magnetic field is\",int(B),\"T\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic field is 6 T\n" + ] + } + ], + "prompt_number": 33 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit