From 34887da4e2731004f7cf208ae59b72f2e27b33cf Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Wed, 6 Aug 2014 16:41:00 +0530 Subject: adding books --- .../Chapter_7.ipynb | 319 +++++++++++++++++++++ 1 file changed, 319 insertions(+) create mode 100755 Engineering_Physics_by_K._Rajagopal/Chapter_7.ipynb (limited to 'Engineering_Physics_by_K._Rajagopal/Chapter_7.ipynb') diff --git a/Engineering_Physics_by_K._Rajagopal/Chapter_7.ipynb b/Engineering_Physics_by_K._Rajagopal/Chapter_7.ipynb new file mode 100755 index 00000000..95dcaf40 --- /dev/null +++ b/Engineering_Physics_by_K._Rajagopal/Chapter_7.ipynb @@ -0,0 +1,319 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7: Optical Fibre Communication" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.1, Page 206" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "#Variable declaration\n", + "NA = 0.24;#Numerical Aperture\n", + "delta = 0.014;\n", + "\n", + "#Calculations & Results\n", + "n1 = (NA)/sqrt(2*delta);#Refractive index of first medium \n", + "print 'Refractive index of first medium is ',round(n1,4)\n", + "n2 = n1 - (delta*n1);#Refractive index of secong material\n", + "print 'Refractive index of secong material is ',round(n2,4)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Refractive index of first medium is 1.4343\n", + "Refractive index of secong material is 1.4142\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2, Page 207" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt,asin,degrees\n", + "\n", + "#Variable declaration\n", + "n1 = 1.49; # Refractive index of first medium\n", + "n2 = 1.44; # Refractive index of second medium\n", + "\n", + "#Calculations & Results\n", + "def deg_to_dms(deg):\n", + " d = int(deg)\n", + " md = abs(deg - d) * 60\n", + " m = int(md)\n", + " sd = (md - m) * 60\n", + " sd=round(sd,2)\n", + " return [d, m, sd]\n", + "\n", + "delta = (n1-n2)/n1; # Index difference\n", + "NA = n1* sqrt(2*delta);\n", + "print 'Numerical Aperture of fiber is',round(NA,3)\n", + "theta = degrees(asin(NA));\n", + "print 'Acceptance angle is ',deg_to_dms(theta),'degrees'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Numerical Aperture of fiber is 0.386\n", + "Acceptance angle is [22, 42, 22.17] degrees\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.3, Page 207" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt,asin,degrees\n", + "\n", + "#Variable declaration\n", + "NA = 0.15 ; # Numerical Aperture of fiber\n", + "n2 = 1.55; # Refractive index of cladding\n", + "n0w = 1.33; # Refractive index of water\n", + "n0a = 1; # Refractive index of air\n", + "\n", + "#Calculations\n", + "def deg_to_dms(deg):\n", + " d = int(deg)\n", + " md = abs(deg - d) * 60\n", + " m = int(md)\n", + " sd = (md - m) * 60\n", + " sd=round(sd,2)\n", + " return [d, m, sd]\n", + "\n", + "n1 = sqrt(NA**2 + n2**2);\n", + "NAW = (sqrt(n1**2 -n2**2))/n0w;\n", + "theta = degrees(asin(NAW));#Acceptance angle in water\n", + "\n", + "#Result\n", + "print 'Acceptance angle in water is ',deg_to_dms(theta),'degrees'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Acceptance angle in water is [6, 28, 32.55] degrees\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.4, Page 216" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log10\n", + "\n", + "#Variable declaration\n", + "l = 16; # Length of optical fiber in Km\n", + "Pi = 240e-6; # Mean optical length launched in optical fiber in Watts\n", + "Po = 6e-6; # Mean optical power at the output in watts\n", + "\n", + "#Calculations&Results\n", + "alpha = 10*log10(Pi/Po);#Signal attenuation in fiber\n", + "print 'Signal attenuation in fiber',round(alpha),'dB'\n", + "alpha1 = alpha/l;#Signal attenuation per km of the fiber\n", + "print 'Signal attenuation per km of the fiber',round(alpha1),'dB/km'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Signal attenuation in fiber 16.0 dB\n", + "Signal attenuation per km of the fiber 1.0 dB/km\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.5, Page 219" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi,exp\n", + "\n", + "#Variable declaration\n", + "Tf = 1400; # Fictive temperature of silicon in Kelvin\n", + "betai = 7e-11; # Isothermal compressibility square meter per newton\n", + "n = 1.46; # Refractive index of silicon\n", + "p = 0.286; # Photoelastic constant of silicon\n", + "lamda = 0.63e-6 # Wavelength in micrometer\n", + "kb = 1.38e-23 # Boltzmann constant in joule per kelvin\n", + "L = 1e3;\n", + "\n", + "#Calculations\n", + "alphas = (8 * pi**3 * n**8 * p**2 * kb * Tf * betai)/(3 * lamda**4);#Rayleigh scattering coefficient\n", + "alphars = exp(-alphas * L);#Loss factor\n", + "\n", + "#Results\n", + "print 'Rayleigh scattering coefficient is ',round(alphas/1e-3,2),'*10^-3 /m'\n", + "print 'Loss factor is',round(alphars,3) #Answer varies due to rounding-off values\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rayleigh scattering coefficient is 1.2 *10^-3 /m\n", + "Loss factor is 0.302\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6, Page 222" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "alpha = 0.5; # Attenuation of single mode optical fibre in dB per km\n", + "lamda = 1.4; # Operating wavelength of optical fiber in micrometer\n", + "d = 8 # Diameter of fiber in micrometer\n", + "y = 0.6; # Laser source frequency width\n", + "\n", + "#Calculations\n", + "pb = 4.4e-3 * d**2 * lamda**2 * alpha * y;#Threshold optical power in SBS\n", + "prs = 5.9e-2 * d**2 * lamda * alpha;#Threshold optical power in SRS\n", + "\n", + "#Results\n", + "print 'Threshold optical power in SBS',pb/1e-3,'mW'\n", + "print 'Threshold optical power in SRS',prs,'W'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Threshold optical power in SBS 165.5808 mW\n", + "Threshold optical power in SRS 2.6432 W\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.7, Page 225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt, pi\n", + "\n", + "#Variable declaration\n", + "n1 = 1.50; # Refreactive index of forst medium\n", + "delta = 0.003; # Index difference\n", + "lamda = 1.6*1e-6; # Operating wavelength of fober in meter\n", + "\n", + "#Calculations&Results\n", + "n2 = sqrt(n1**2-(2*delta*n1**2));#refractive index of cladding\n", + "#Substituting n2^2 = n1^2 - 2*delta*n1^2 in euation of Rc,\n", + "rc = (3*n1**2*lamda)/(4*pi*((2*delta*n1**2)**(3./2)));#The critical radius of curvature for which bending losses occur \n", + "print 'The critical radius of curvature for which bending losses occur is ',round(rc/1e-6,2),'um'\n", + "#Incorrect answer in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The critical radius of curvature for which bending losses occur is 547.92 um\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit