From 4a1f703f1c1808d390ebf80e80659fe161f69fab Mon Sep 17 00:00:00 2001 From: Thomas Stephen Lee Date: Fri, 28 Aug 2015 16:53:23 +0530 Subject: add books --- .../Chapter5.ipynb | 193 +++++++++++++++++++++ 1 file changed, 193 insertions(+) create mode 100644 Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb (limited to 'Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb') diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb new file mode 100644 index 00000000..9c78727b --- /dev/null +++ b/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb @@ -0,0 +1,193 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#5: Laser" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.1, Page number 124" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The ratio of propulsion of the two states in a laser is 1.3893 *10**-30\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "t=300; #temperature(K)\n", + "w=698.3*10**-9; #wavelength of photon(m)\n", + "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg.s^-2 k^-1)\n", + "\n", + "#Calculation\n", + "Ratio=math.exp((-h*c)/(w*Kb*t)); #ratio of propulsion of the two states in a laser\n", + "\n", + "#Result\n", + "print \"The ratio of propulsion of the two states in a laser is\",round(Ratio*10**30,4),\"*10**-30\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.2, Page number 133" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The band gap for lnp laser diode is 0.8014 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "w=1.55*10**-6; #wavelength of light emission(m)\n", + "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "e=1.6*10**-19; #charge of electron(c)\n", + "\n", + "#Calculation\n", + "Eg=(h*c)/(w*e); #band gap(eV)\n", + "\n", + "#Result\n", + "print \"The band gap for lnp laser diode is\",round(Eg,4),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.3, Page number 133" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The long wavelength limit of an extrinsic semiconductor is 6.2109 *10**-5 m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=0.02*1.6*10**-19; #Ionisation energy(J)\n", + "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "\n", + "#Calculation\n", + "w=h*c/E; #long wavelength limit of an extrinsic semiconductor(m)\n", + "\n", + "#Result\n", + "print \"The long wavelength limit of an extrinsic semiconductor is\",round(w*10**5,4),\"*10**-5 m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##Example number 5.4, Page number 133" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The number of photons emitted per minute is 6.562 *10**17 photons/minute\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "E=3.5*10**-3*60; #power output(J/min)\n", + "w=0.621*10**-6; #wavelength of light(m)\n", + "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "\n", + "#Calculation\n", + "e=h*c/w; #energy emitted by one photon(J)\n", + "n=E/e; #The number of photons emitted per minute(photons/minute)\n", + "\n", + "#Result\n", + "print \"The number of photons emitted per minute is\",round(n/10**17,3),\"*10**17 photons/minute\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} -- cgit