From a78126bbe4443e9526a64df9d8245c4af8843044 Mon Sep 17 00:00:00 2001 From: Jovina Dsouza Date: Wed, 18 Jun 2014 13:08:52 +0530 Subject: adding book --- Engineering_Physics_Aruldhas/Chapter15_1.ipynb | 154 +++++++++++++++++++++++++ 1 file changed, 154 insertions(+) create mode 100644 Engineering_Physics_Aruldhas/Chapter15_1.ipynb (limited to 'Engineering_Physics_Aruldhas/Chapter15_1.ipynb') diff --git a/Engineering_Physics_Aruldhas/Chapter15_1.ipynb b/Engineering_Physics_Aruldhas/Chapter15_1.ipynb new file mode 100644 index 00000000..cfabc2c6 --- /dev/null +++ b/Engineering_Physics_Aruldhas/Chapter15_1.ipynb @@ -0,0 +1,154 @@ +{ + "metadata": { + "name": "Chapter15" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "15: Thermal Properties " + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.1, Page number 323" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the Debye temperature\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\nf_D = 64*10**11; #Debye frequency for Al(Hz)\n\n#Calculation\ntheta_D = h*f_D/k; #Debye temperature(K)\ntheta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n\n#Result\nprint \"The Debye temperature of aluminium is\",theta_D, \"K\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The Debye temperature of aluminium is 307.3 K\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.2, Page number 323" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the lattice specific heat\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nN = 6.02*10**26; #Avogadro's number(per kmol)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\nf_D = 40.5*10**12; #Debye frequency for Al(Hz)\nT = 30; #Temperature of carbon(Ks)\n\n#Calculation\ntheta_D = h*f_D/k; #Debye temperature(K)\nC_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\nC_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n\n#Result\nprint \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n\n#answer given in the book is wrong in the 2nd decimal", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The lattice specific heat of carbon is 7.132 J/k-mol/K\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.3, Page number 323" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To show that the frequency falls in the infrared region\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\ntheta_E = 1990; #Einstein temperature of Cu(K)\n\n#Calculation\nf_E = k*theta_E/h; #Einstein frequency for Cu(K)\n\n#Result\nprint \"The Einstein frequency for Cu is\",f_E, \"Hz\"\nprint \"The frequency falls in the near infrared region\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The Einstein frequency for Cu is 4.14458194989e+13 Hz\nThe frequency falls in the near infrared region\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.4, Page number 323" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electronic and lattice heat capacities\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nN = 6.02*10**23; #Avogadro's number(per mol)\nT = 0.05; #Temperature of Cu(K)\nE_F = 7; #Fermi energy of Cu(eV)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\ntheta_D = 348; #Debye temperature of Cu(K)\n\n#Calculation\nC_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\nC_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n\n#Result\nprint \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\nprint \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n\n#answer for lattice heat capacity given in the book is wrong", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\nThe lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.5, Page number 324" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the heat capacity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 1; #For simplicity assume temperature to be unity(K)\nR = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\ntheta_E = T; #Einstein temperature(K)\n\n#Calculation\nC_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\nC_V = C_V/3;\nC_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n\n#Result\nprint \"The Einstein lattice specific heat is\",C_V, \"X 3R\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The Einstein lattice specific heat is 0.921 X 3R\n" + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 15.6, Page number 324" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the molar electronic heat capacity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nv = 2; #Valency of Zn atom\nN = v*6.02*10**23; #Avogadro's number(per mol)\nT = 300; #Temperature of Zn(K)\nE_F = 9.38; #Fermi energy of Zn(eV)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\n\n#Calculation\nN = v*6.02*10**23; #Avogadro's number(per mol)\nC_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\nC_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n\n#Result\nprint \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\"", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n" + } + ], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit