From 92cca121f959c6616e3da431c1e2d23c4fa5e886 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 7 Apr 2015 15:58:05 +0530 Subject: added books --- Engineering_Physics_/Chapter8.ipynb | 392 ++++++++++++++++++++++++++++++++++++ 1 file changed, 392 insertions(+) create mode 100755 Engineering_Physics_/Chapter8.ipynb (limited to 'Engineering_Physics_/Chapter8.ipynb') diff --git a/Engineering_Physics_/Chapter8.ipynb b/Engineering_Physics_/Chapter8.ipynb new file mode 100755 index 00000000..d9dc420b --- /dev/null +++ b/Engineering_Physics_/Chapter8.ipynb @@ -0,0 +1,392 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:e5ea4ff1709764161940877bdcbbb6d4676a6eced70f445ea6f3a31c76d16a31" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "8: X-rays" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.1, Page number 197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=4.255; #atomic spacing(angstrom)\n", + "lamda=1.549; #wavelength of K-copper line(angstrom) \n", + "n=1; #theta is smallest when n=1\n", + "\n", + "\n", + "#Calculation\n", + "theta=math.asin(lamda/(2*d)); #glancing angle(radian)\n", + "theta=theta*(180/math.pi); #glancing angle(degrees)\n", + "#max value of sin(theta)=1 for highest order\n", + "nmax=((2*d)/lamda); #highest bragg's order\n", + "\n", + "\n", + "#Result\n", + "print \"smallest glancing angle is\",round(theta,4),\"degrees\"\n", + "print \"maximum order of reflection is\",round(nmax,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "smallest glancing angle is 10.4875 degrees\n", + "maximum order of reflection is 5.494\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.2, Page number 197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=60*10**3; #potential difference(volts)\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "e=1.6*10**-19; #electron charge(coulomb)\n", + "lamda=0.194*10**-10; #minimum wavelength of x-rays(m)\n", + "\n", + "#Calculation\n", + "h=(lamda*e*V)/c; #planck's constant(Jsec)\n", + "\n", + "#Result\n", + "print \"planck's constant is\",h,\"Jsec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "planck's constant is 6.208e-34 Jsec\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.3, Page number 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "#for 110 plane\n", + "h=1;\n", + "k=1;\n", + "l=0;\n", + "a=3; #lattice parameter(angstrom)\n", + "n=1;\n", + "theta=12.5; #glancing angle(degrees)\n", + "\n", + "#Calculation\n", + "theta1=theta*(math.pi/180); #glancing angle(radian)\n", + "d110=(a/math.sqrt((h**2)+(k**2)+(l**2))); \n", + "lamda=2*d110*math.sin(theta1)/n; #wavelength of x-ray(angstrom)\n", + "nmax=((2*d110)/lamda); #highest order possible\n", + "\n", + "#Result\n", + "print \"wavelength of x-ray beam is\",round(lamda,3),\"angstrom\"\n", + "print \"highest bragg's order possible is\",int(nmax)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of x-ray beam is 0.918 angstrom\n", + "highest bragg's order possible is 4\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.4, Page number 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "d=2.81*10**-10; #interplanar spacing(m)\n", + "theta=14; #glancing angle(degrees) \n", + "e=1.6*10**-19; #electron charge(c)\n", + "V=9100; #voltage(V)\n", + "n=1;\n", + "c=3*10**8; #velocity of light(m/sec)\n", + "\n", + "#Calculation\n", + "theta=theta*(math.pi/180); #glancing angle(radian)\n", + "lamda=2*d*math.sin(theta)/n; #minimum wavelength\n", + "h=(lamda*e*V)/c; #planck's constant(Jsec)\n", + "\n", + "#Result\n", + "print \"planck's constant is\",round(h*10**34,4),\"*10**-34 Jsec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "planck's constant is 6.5986 *10**-34 Jsec\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.5, Page number 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "thetaA=30; #glancing angle for line A(degrees)\n", + "lamdaB=0.97; #wavelength of line B(angstrom)\n", + "thetaB=60; #glancing angle for line B(degrees)\n", + "\n", + "#Calculation\n", + "#for line A-> 2*d*sin(thetaA)=lamdaA(n=1)\n", + "thetaA=thetaA*(math.pi/180); #glancing angle for line A(radian)\n", + "#for line B-> 2*d*sin(thetaB)=3*lamdaB(n=3)\n", + "thetaB=thetaB*(math.pi/180); #glancing angle for line B(radian) \n", + "d=(3*lamdaB)/(2*math.sin(thetaB)); #interplanar spacing(angstrom)\n", + "lamdaA=2*d*math.sin(thetaA); #wavelength of line A(angstrom)\n", + "\n", + "#Result\n", + "print \"wavelength of line A is\",round(lamdaA,2),\"angstrom\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of line A is 1.68 angstrom\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.6, Page number 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "a=3.615; #lattice constant(angstrom)\n", + "h=1;\n", + "k=1;\n", + "l=1;\n", + "theta=21.7; #glancing angle(degrees)\n", + "\n", + "#Calculation\n", + "d111=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(angstrom)\n", + "theta=theta*(math.pi/180); #glancing angle(radian)\n", + "lamda=2*d111*math.sin(theta); #wavelength of X-rays(angstrom)\n", + "\n", + "#Result\n", + "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of X-rays is 1.543 angstrom\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.7, Page number 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "V=50*10**3; #voltage(V)\n", + "n=4; #FCC crystal\n", + "m=74.6; #molecular mass(kg)\n", + "N=6.02*10**26; #avagadro number(per kg mol)\n", + "rho=1.99*10**3; #density(kg/m**3) \n", + "\n", + "#Calculation\n", + "lamda=(12400/V); #short wavelength(angstrom)\n", + "a=(((n*m)/(N*rho))**(1/3)); #lattice constant(m)\n", + "#for kcl ionic crystal\n", + "d=a/2;\n", + "sintheta=lamda*10**-10/(2*d); #value of sintheta\n", + "theta=math.asin(sintheta); #glancing angle(radian)\n", + "theta=theta*(180/math.pi); #glancing angle(degrees)\n", + "\n", + "#Result\n", + "print \"short wavelength of spectrum from tube is\",lamda,\"angstrom\"\n", + "print \"glancing angle for that wavelength is\",round(theta,4),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "short wavelength of spectrum from tube is 0.248 angstrom\n", + "glancing angle for that wavelength is 2.2589 degrees\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 8.8, Page number 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "theta1=5.4; #glancing angle(degrees)\n", + "theta2=7.6; #glancing angle(degrees)\n", + "theta3=9.4; #glancing angle(degrees) \n", + "\n", + "#Calculation\n", + "#from bragg's law 2*d*sin(theta)=n*lamda, n=1\n", + "theta1=theta1*(math.pi/180); #glancing angle(radian)\n", + "theta2=theta2*(math.pi/180); #glancing angle(radian)\n", + "theta3=theta3*(math.pi/180); #glancing angle(radian)\n", + "d100=lamda/2*math.sin(theta1); #interplanar spacing\n", + "d110=lamda/2*math.sin(theta2); #interplanar spacing\n", + "d111=lamda/2*math.sin(theta3); #interplanar spacing\n", + "\n", + "#Result\n", + "print \"ratio of interplanar spacing (1/d100):(1/d110):(1/d111)=\",round(math.sin(theta1),4),\":\",round(math.sin(theta2),4),\":\",round(math.sin(theta3),4)\n", + "print \"as ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3). this relation is valid for simple cubic systems. therefore, this is a simple cubic crystal\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of interplanar spacing (1/d100):(1/d110):(1/d111)= 0.0941 : 0.1323 : 0.1633\n", + "as ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3). this relation is valid for simple cubic systems. therefore, this is a simple cubic crystal\n" + ] + } + ], + "prompt_number": 34 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit