From fba055ce5aa0955e22bac2413c33493b10ae6532 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- Engineering_Physics/chapter7.ipynb | 912 +++++++++++++++++++++++++++++++++++++ 1 file changed, 912 insertions(+) create mode 100755 Engineering_Physics/chapter7.ipynb (limited to 'Engineering_Physics/chapter7.ipynb') diff --git a/Engineering_Physics/chapter7.ipynb b/Engineering_Physics/chapter7.ipynb new file mode 100755 index 00000000..b30ad5a1 --- /dev/null +++ b/Engineering_Physics/chapter7.ipynb @@ -0,0 +1,912 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:43ad060be6803a5e6c90770bf46ae3612188f9380f800bb70a03161cb97405cb" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Chapter7:WAVE MECHANICS" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.1:pg-200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate de Broglie wavelength \n", + "v=1.5*10**7 #velocity of proton =(1/20)*velocity of light i.e.3*10**8 in m/s\n", + "m=1.67*10**-27 #mass of the proton in kg\n", + "h=6.6*10**-34 #plank's constant \n", + "lamda=h/(m*v)\n", + "print \"the de Broglie wavelength is lamda=\",\"{:.3e}\".format(lamda),\"m\" \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the de Broglie wavelength is lamda= 2.635e-14 m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.2:pg-200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate de Broglie wavelength\n", + "#mo*c**2=1.507*10**-10/1.6*10**-19=941.87 Mev\n", + "#since 12.8 Mev is very small compared to rest mass energy hence relavistic consideration may be ignored\n", + "m=1.67*10**-27 #mass in kg\n", + "h=6.62*10**-34 #plank's constant\n", + "E=12.8*10**6 #energy in Mev\n", + "lamda=h/math.sqrt(2*m*E*1.6*10**-19)/(1e-10)\n", + "print \"the de Broglie wavelength is lamda=\",round(lamda,5),\"angstrom\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the de Broglie wavelength is lamda= 8e-05 angstrom\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.4:pg-201" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate wavelength\n", + "h=6.6*10**-34 #plank's constant\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "E=1.25*10**3 #pottential difference keV\n", + "lamda=h/math.sqrt(2*m*E*1.6*10**-19)\n", + "print \"the wavelength is lamda=\",\"{:.2e}\".format(lamda),\"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the wavelength is lamda= 3.46e-11 m\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.5:pg-201" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate kinetic energy of an electron \n", + "h=6.63*10**-34 #plank's constant\n", + "mo=9.1*10**-31 #rest mass of an electron in kg\n", + "lamda=5896*10**-10 #wavelength in angstrom\n", + "K=(h**2)/(2*mo*(lamda**2)*1.6*10**-19) \n", + "print \"kinetic energy of an electron is K=\",\"{:.2e}\".format(K),\"eV\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "kinetic energy of an electron is K= 4.34e-06 eV\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.6:pg-202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate the wavelength of an electron of kinetic energy\n", + "mo=9.1*10**-31 #mass of an electron in kg\n", + "c=3*10**8 #speed of light in m/s \n", + "K=1*10**6#kinetic energy in eV\n", + "h=6.62*10**-34 #planck's constant in J-s\n", + "#E=moc**2=81.9*10**-15/1.6*10**-19 eV=0.51MeV\n", + "E=0.51*10**6\n", + "lamda=(h*c)/(math.sqrt(K*(K+2*E))*1.6*10**-19)\n", + "print \"wavelength of an electron of kinetic energy is lamda=\",round(lamda,14),\"m\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of an electron of kinetic energy is lamda= 8.7e-13 m\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.7:pg-203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate de Broglie wavelength\n", + "V=100 #potential difference in volts\n", + "lamda=12.25/math.sqrt(V)\n", + "print \"de Broglie wavelength of any electron is lamda=\",lamda,\"angstrom\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "de Broglie wavelength of any electron is lamda= 1.225 angstrom\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.9:pg-203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate energy of the neutron\n", + "h=6.60*10**-34 #plank's constant in J/s\n", + "m=1.674*10**-27 #mass of the neutron in kg\n", + "lamda=10**-10 #de Broglie wavelength in m\n", + "E=(h**2)/(2*m*(lamda**2)*1.6*10**-19)\n", + "print \"energy of the neutron is E=\",\"{:.2e}\".format(E),\"eV\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of the neutron is E= 8.13e-02 eV\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.10:pg-204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate wavelength\n", + "h=6.6*10**-34 #plank's constant in J/sec\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "c=3*10**8 #light speed in m/s\n", + "lamda=h/(m*c)/(1e-10) # in angstrom\n", + "print \"wavelength of quantum of radiant energy is lamda=\",round(lamda,4),\"angstrom\"\n", + "#to calculate number of photons \n", + "power=12 #power emitted by the lamp =150*(8/100) in watts\n", + "E=12.0 #energy emitted per second\n", + "lamda=4500*10.0**-10\n", + "energy=(h*c)/lamda #energy contained in one photon in J\n", + "number=E/energy\n", + "print \"number of photons emitted per sec is number=\",round(number,-16),\"unitless\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of quantum of radiant energy is lamda= 0.0242 angstrom\n", + "number of photons emitted per sec is number= 2.727e+19 unitless\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.11:pg-209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in position\n", + "#actual formula is (delx)min*(delp)max=h/2*math.pi-------------eq(1)\n", + "#(delp)max=p(momentum of the electron)\n", + "#mv=mov/math.sqrt(1-(v/c)**2)---------------------eq(2)\n", + "mo=9*10**-31 #mass of an electron in m/s\n", + "c=3*10**8 #light speed in m/s\n", + "v=3*10**7 #velocity in m/s \n", + "h=6.6*10**-34 #plank's constant in J/s\n", + "#from eq(1) and eq(2),we get\n", + "delxmin=(h*math.sqrt(1-(v/c)**2))/(2*math.pi*mo*v)\n", + "print \"smallest possible uncertainity in the position of an electron is delxmin=\",round(delxmin/1e-10,4),\"angstrom\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "smallest possible uncertainity in the position of an electron is delxmin= 0.0389 angstrom\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.12:pg-209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate minimum uncertainity in the velocity\n", + "delxmax=10**-8 #maximum uncertainity in position in m\n", + "h=6.626*10**-34 #planck's constant\n", + "delpmin=h/(2*math.pi*delxmax) #minimum uncertainity in momentum in kg-m/s**2 \n", + "m=9*10**-31 #mass of an electron in kg\n", + "delvmin=delpmin/m\n", + "print \"minimum uncertainity in the velocity is delvmin=\",\"{:.2e}\".format(delvmin),\"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in the velocity is delvmin= 1.17e+04 m/s\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.13:pg-209" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in the momentum of the parcticle \n", + "h=6.626*10**-34 #planck's constant J-s\n", + "delx=0.01*10**-2 #uncertainity in position in m\n", + "delp=h/(2*math.pi*delx)\n", + "print \"uncertainity in the momentum of the parcticle is delp=\",\"{:.2e}\".format(delp),\"kg-m/s**2\"\n", + "#to calculate uncertainity in the velocity of an electron\n", + "m=9*10**-31 #mass of an electron in kg\n", + "delx=5*10**-10 \n", + "delv=h/(2*math.pi*m*delx)\n", + "print \"uncertainity in the velocity of an electron is delv=\",\"{:.3e}\".format(delv),\"m/s\"\n", + "#to calculate uncertainity in the velocity of alpha particle \n", + "m=4*1.67*10**-27 #mass of alpha particle in kg\n", + "delx=5*10**-10\n", + "delv=h/(2*math.pi*m*delx)\n", + "print \"uncertainity in the velocity of an electron is delv=\",round(delv,2),\"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "uncertainity in the momentum of the parcticle is delp= 1.05e-30 kg-m/s**2\n", + "uncertainity in the velocity of an electron is delv= 2.343e+05 m/s\n", + "uncertainity in the velocity of an electron is delv= 31.57 m/s\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.14:pg-210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in position\n", + "m=9.11*10**-31 #mass of electron in kg\n", + "delv=40 #uncertainity in velocity in m/s\n", + "h=6.6*10**-34 #plank's constant \n", + "delx=h/(2*math.pi*m*delv)\n", + "print \"uncertainity in the position of the electron is delx=\",\"{:.2e}\".format(delx),\"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "uncertainity in the position of the electron is delx= 2.88e-06 m\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.15:pg-210" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in frequency\n", + "#delE*delt=h/2*math.pi----eq(1)\n", + "#delE=h*delv-----------eq(2)\n", + "delt=10**-8 #uncertainity in time in s\n", + "#from eq(1) and eq(2),we get\n", + "delnu=1/(2*math.pi*delt)\n", + "print \"minimum uncertainity in the frequency of the photon is delv=\",\"{:.3e}\".format(delnu),\"sec**-1\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in the frequency of the photon is delv= 1.592e+07 sec**-1\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.16:pg-211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in the energy\n", + "h=6.63*10**-34 #plank's constant in J-s\n", + "delt=2.5*10**-14 #uncertainity in time in s\n", + "delE=h/(2*math.pi*delt*1.6*10**-19)\n", + "print \"minimum error with which the energy of the state can be measured is delE=\",round(delE,3),\"ev\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum error with which the energy of the state can be measured is delE= 0.026 ev\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.17:pg-211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate time required for the atomic system \n", + "#delE=h*c*dellamda/lamda**2 -----eq(1)\n", + "#delE*delt=h/2*math.pi----------eq(2)\n", + "dellamda=10**-14\n", + "c=3*10**8\n", + "lamda=6*10**-7\n", + "#from eq(1)and eq(2),we get\n", + "delt=(lamda**2)/(2*math.pi*c*dellamda)\n", + "print \"time required for the atomic system to retain rotational energy is delt=\",\"{:.1e}\".format(delt),\"s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "time required for the atomic system to retain rotational energy is delt= 1.9e-08 s\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.18:pg-211" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate minimum uncertainity in the momentum \n", + "delxmax=5*10**-14 #uncertainity in position in m\n", + "h=6.626*10**-34 #plank's constant in Js\n", + "delpmin=h/(2*math.pi*delxmax)\n", + "print \"minimum uncertainity in the momentum of the nucleon is delpmin=\",\"{:.2e}\".format(delpmin),\"kg m/s\"\n", + "m=1.675*10**-27 #mass in kg\n", + "Emin=(delpmin**2)/(2*m*1.6*10**-19)\n", + "print \"minimum kinetic energy of the nucleon is Emin=\",round(Emin,2),\"eV\"\n", + "#the answer is given wrong in the book Emin=0.039 eV\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in the momentum of the nucleon is delpmin= 2.11e-21 kg m/s\n", + "minimum kinetic energy of the nucleon is Emin= 8299.24 eV\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.19:pg-212" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in velocity\n", + "delx=1.1*10**-8 #uncertainity in velocity in m\n", + "h=6.626*10**-34 #plank's constant\n", + "m=9.1*10**-31 #mass of electron in kg\n", + "delv=h/(2*math.pi*m*delx)\n", + "print \"minimum uncertainity in velocity is delv=\",\"{:.2e}\".format(delv),\"m/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in velocity is delv= 1.05e+04 m/s\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.20:pg-212" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate uncertainity in frequency\n", + "delt=10**-8 #uncertainity in time\n", + "delnu=1/(2*math.pi*delt) \n", + "print \"minimum uncertainity in the frequency of a photon is delnu=\",\"{:.2e}\".format(delnu),\"sec**-1\"\n", + "#to use the uncertainity principle to place a lower limit on the energy an electron must have if it is to be part of a nucleus\n", + "delx=5*10**-15 #uncertainity in position\n", + "delp=h/(2*2*math.pi*delx) #uncertainbity in momentum\n", + "c=3*10**8 #/speed of light in m/s\n", + "E=delp*c\n", + "print \"energy of an electron is E=\",\"{:.2e}\".format(E),\"J\"\n", + "\n", + "# the answer is slightlty different due to approximation in textboook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum uncertainity in the frequency of a photon is delnu= 1.59e+07 sec**-1\n", + "energy of an electron is E= 3.16e-12 J\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.22:pg-223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate probability of finding the particle\n", + "a=25*10**-10#width in angstrom \n", + "#wave function of the particle is chi(x)=math.sqrt(2/a)*math.sin(n*math.pi*x/a),for the particle in the least energy state n=1\n", + "chix=math.sqrt(2/a)*math.sin(math.pi*(a/2)/a)\n", + "delx=5*10**-10 #interval in angstrom\n", + "P=delx*chix**2\n", + "print \"probability of finding the particle is P=\",P,\"unitless\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "probability of finding the particle is P= 0.4 unitless\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.24:pg-224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate energy of an electron\n", + "n=1 #least energy of the particle \n", + "h=6.63*10**-34 #planck's constant in Js\n", + "m=9.11*10**-31 #mass of electron in kg\n", + "a=10**-10 #width in angstrom\n", + "E=(n**2)*(h**2)/(8*m*(1.602*10**-19)*a**2)\n", + "print \"energy of an electron moving in one dimension in an infinitely high potential box is E=\",round(E,2),\"eV\"\n", + "#the answer is given wrong in the book E=5.68 eV\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "energy of an electron moving in one dimension in an infinitely high potential box is E= 37.65 eV\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.26:pg-225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate probability\n", + "x1=0.45 #x1=0.45*L\n", + "x2=0.55 #x2=0.55*L\n", + "n=1 #for ground state \n", + "#formula is P=integrate('(2/L)*math.sin(n*math.pi*x)**2),'x',x1,x2)\n", + "from scipy.integrate import quad\n", + "def integrand(x):\n", + " return 2*(math.sin(n*math.pi*x)**2)\n", + "P1 ,er=quad(integrand,x1,x2)\n", + "\n", + "print \"P1=\",round(P1,3),\"unitless\"\n", + "probability1=P1*100\n", + "print \"probability for the ground states is probability1 =\",round(probability1,1),\"%\"\n", + "n=2 #for first excited state\n", + "P2, er=quad(integrand,x1,x2)\n", + "print \"P2=\",round(P2,4),\"unitless\"\n", + "probability2=P2*100 \n", + "print \"probability for first excited states is probability2=\",round(probability2,2),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "P1= 0.198 unitless\n", + "probability for the ground states is probability1 = 19.8 %\n", + "P2= 0.0065 unitless\n", + "probability for first excited states is probability2= 0.65 %\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.28:pg-226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate energy of a neutron\n", + "#consider nucleus as a cubical box of size 10**-14m\n", + "#x=y=z=a=10**-14=l\n", + "#for neutron to be in the lowest energy state nx=ny=nz=1\n", + "#formula is E=(math.pi**2*h**2/8*math.pi**2*m)*((nx/lx)**2+(ny/ly)**2+(nz/lz)**2)\n", + "h=6.626*10**-34 #planck's constant in Js\n", + "m=1.6*10**-27 #mass in kg\n", + "l=10**-14 #in m\n", + "E=(math.pi**2)*(h**2)*3/(4*(math.pi**2)*2*m*(1.6*10**-19)*l**2)\n", + "print \"lowest energy of a neutron is E=\",round(E/(1e6),2),\"MeV\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "lowest energy of a neutron is E= 6.43 MeV\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.29:pg-226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate zero point energy of a linear harmonic oscillator\n", + "h=6.63*10**-34 #planck's constant in Js\n", + "nu=50 #frequency in Hz\n", + "zeropointenergy=(h*nu)/2\n", + "print \"zeropointenergy=\",\"{:.2e}\".format(zeropointenergy),\"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "zeropointenergy= 1.66e-32 J\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.30:pg-226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate zero point energy\n", + "nu=1 #frequency in Hz\n", + "h=6.63*10**-34 #planck's constant in Js\n", + "zeropointenergy=(h*nu)/2\n", + "print \"zeropointenergy=\",zeropointenergy,\"J\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "zeropointenergy= 3.315e-34 J\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Ex7.31:pg-226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "#to calculate frequency of vibration\n", + "En=0.1*1.6*10**-19 #energy of a linear harmonic oscillator in eV\n", + "n=3.0 #third excited state\n", + "h=6.63*10**-34 #planck's constant\n", + "nu=En/((n+(1/2.0))*h)\n", + "print \"the frequency of vibration is nu=\",round(nu,-9),\"Hz\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the frequency of vibration is nu= 6.895e+12 Hz\n" + ] + } + ], + "prompt_number": 16 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit