From fba055ce5aa0955e22bac2413c33493b10ae6532 Mon Sep 17 00:00:00 2001 From: hardythe1 Date: Tue, 5 May 2015 14:21:39 +0530 Subject: add books --- Engineering_Physics/Chapter6.ipynb | 437 +++++++++++++++++++++++++++++++++++++ 1 file changed, 437 insertions(+) create mode 100755 Engineering_Physics/Chapter6.ipynb (limited to 'Engineering_Physics/Chapter6.ipynb') diff --git a/Engineering_Physics/Chapter6.ipynb b/Engineering_Physics/Chapter6.ipynb new file mode 100755 index 00000000..271f7718 --- /dev/null +++ b/Engineering_Physics/Chapter6.ipynb @@ -0,0 +1,437 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:015049a6d28a54143e382d872ce51260f52be159a8159c04fe93d876c0cea685" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "6: Polarisation" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.1, Page number 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew=1.63; #refractive index of the glass plate\n", + "\n", + "#Calculation \n", + "#tan ip=mew\n", + "ip=math.atan(mew); #ip=polarising angle(radian)\n", + "ip=ip*180/math.pi; #ip=polarising angle(degrees)\n", + "#ip+r=90\n", + "r=90-ip; #angle of refraction(degrees)\n", + "rd=int(r); #angle(degrees)\n", + "rm=round(60*(r-rd)); #angle(minutes)\n", + "\n", + "#Result\n", + "print \"The angle of refraction is\",rd,\"degrees\",rm,\"minutes\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle of refraction is 31 degrees 32.0 minutes\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.2, Page number 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "#I=I0(cos^2(teta))\n", + "theta=50; #angle made between two principle planes(degrees)\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle(radian)\n", + "I=(math.cos(theta))**2; #incident unpolarized light\n", + "#percentage of incident unpolarised light is (I/I0)*100 where I0 is incident polarised light\n", + "p=I*100; #percentage of incident unpolarized light(%)\n", + "\n", + "#Result\n", + "print \"The percentage of incident unpolarized light is\",int(p),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The percentage of incident unpolarized light is 41 %\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.3, Page number 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "#I=I0*cos^2(teta)\n", + "#cos^2(teta)=I/I0\n", + "a=0.08; #a=I/I0;where I=incident unpolarized light & I0=incident polarized light\n", + "\n", + "#Calculation \n", + "theta=math.acos(math.sqrt(a)); #angle between planes of transmission of analyser and polariser(radian)\n", + "theta=theta*180/math.pi; #angle(degrees)\n", + "thetad=int(theta); #angle(degrees)\n", + "thetam=round(60*(theta-thetad)); #angle(minutes)\n", + "\n", + "#Result\n", + "print \"The angle between the planes of transmission of analyser & polariser is +(or)- \",thetad,\"degrees\",thetam,\"minutes\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle between the planes of transmission of analyser & polariser is +(or)- 73 degrees 34.0 minutes\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.4, Page number 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "#IE=A^2(cos^2(teta));IO=A^2(sin^2(teta))\n", + "#I0/IE=tan^2(teta)\n", + "theta=40; #angle made between incident beam & optic axis(degrees)\n", + "\n", + "#Calculation \n", + "theta=theta*math.pi/180; #angle(radian)\n", + "a=math.tan(theta)**2; #I0/IE\n", + "\n", + "#Result\n", + "print \"I0/IE=\",round(a,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "I0/IE= 0.7\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.5, Page number 108" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=589; #wavelength of light(nm)\n", + "mew0=1.54; #refractive index for ordinary wave\n", + "mewE=1.55; #refractive index for extraordinary wave\n", + "\n", + "#Calculation \n", + "t=lamda/(4*(mewE-mew0))*10**-3; #thickness(micro m)\n", + "\n", + "#Result\n", + "print \"The thickness of a quarter-wave plate is\",t,\"micro m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The thickness of a quarter-wave plate is 14.725 micro m\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.6, Page number 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ip=52; #angle of polarization(degrees)\n", + "\n", + "#Calculation \n", + "ip=ip*math.pi/180; #angle(radian)\n", + "mew=math.tan(ip); #refractive index of the material surface\n", + "\n", + "#Result\n", + "print \"The refractive index of the material surface is\",round(mew,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The refractive index of the material surface is 1.28\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.7, Page number 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "r=33; #angle of refraction(degrees)\n", + "\n", + "#Calculation \n", + "ip=90-r; #polarising angle(degrees)\n", + "ip=ip*math.pi/180; #angle(radian)\n", + "mew=math.tan(ip); #refractive index of quartz\n", + "\n", + "#Result\n", + "print \"The refractive index of quartz is\",round(mew,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The refractive index of quartz is 1.54\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.8, Page number 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "#IE=A^2*cos^2(teta);IO=A^2*sin^2(teta)\n", + "#I0/IE=tan^2(teta)=0.65\n", + "a=0.65; #ratio of intensities of ordinary & extraordinary light\n", + "\n", + "#Calculation \n", + "theta=math.atan(math.sqrt(a)); #angle made by plane of vibration of the incident light with optic axis(radian)\n", + "theta=theta*180/math.pi; #angle(degrees)\n", + "thetad=int(theta); #angle(degrees)\n", + "thetam=int(60*(theta-thetad));\n", + "\n", + "#Result\n", + "print \"The angle made by the plane of vibration of incident light with the optic axis is\",thetad,\"degrees\",thetam,\"minutes\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle made by the plane of vibration of incident light with the optic axis is 38 degrees 52 minutes\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.9, Page number 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew0=1.544; #refractive index of ordinary waves\n", + "mewE=1.553; #refractive index of extraordinary waves\n", + "lamda=550; #wavelength(nm) \n", + "t=9;\n", + "\n", + "#Calculation \n", + "delta=((2*180)/(lamda*(10**-9)))*(mewE-mew0)*t*(10**-6); #phase difference(degrees)\n", + "\n", + "#Result\n", + "print \"The phase difference between O and E rays is\",int(delta),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The phase difference between O and E rays is 53 degrees\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 6.10, Page number 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "delta=50; #phase difference(degrees)\n", + "mewE=1.544; #refractive index of extraordinary waves\n", + "mew0=1.553; #refractive index of ordinary waves\n", + "t=8; #thickness(nm)\n", + "\n", + "#Calculation \n", + "lamda=((2*180)/delta)*(mew0-mewE)*t*10**-6*10**9; #wavelength of light incident(nm)\n", + "\n", + "#Result\n", + "print \"The wavelength of light incident is\",lamda,\"nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of light incident is 518.4 nm\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file -- cgit